scholarly journals Local dependence of ion temperature gradient on magnetic configuration, rotational shear and turbulent heat flux in MAST

2014 ◽  
Vol 54 (4) ◽  
pp. 042003 ◽  
Author(s):  
Y.-c. Ghim ◽  
A.R. Field ◽  
A.A. Schekochihin ◽  
E.G. Highcock ◽  
C. Michael ◽  
...  
2013 ◽  
Vol 723 ◽  
pp. 91-125 ◽  
Author(s):  
W. M. J. Lazeroms ◽  
G. Brethouwer ◽  
S. Wallin ◽  
A. V. Johansson

AbstractThis work describes the derivation of an algebraic model for the Reynolds stresses and turbulent heat flux in stably stratified turbulent flows, which are mutually coupled for this type of flow. For general two-dimensional mean flows, we present a correct way of expressing the Reynolds-stress anisotropy and the (normalized) turbulent heat flux as tensorial combinations of the mean strain rate, the mean rotation rate, the mean temperature gradient and gravity. A system of linear equations is derived for the coefficients in these expansions, which can easily be solved with computer algebra software for a specific choice of the model constants. The general model is simplified in the case of parallel mean shear flows where the temperature gradient is aligned with gravity. For this case, fully explicit and coupled expressions for the Reynolds-stress tensor and heat-flux vector are given. A self-consistent derivation of this model would, however, require finding a root of a polynomial equation of sixth-order, for which no simple analytical expression exists. Therefore, the nonlinear part of the algebraic equations is modelled through an approximation that is close to the consistent formulation. By using the framework of a$K\text{{\ndash}} \omega $model (where$K$is turbulent kinetic energy and$\omega $an inverse time scale) and, where needed, near-wall corrections, the model is applied to homogeneous shear flow and turbulent channel flow, both with stable stratification. For the case of homogeneous shear flow, the model predicts a critical Richardson number of 0.25 above which the turbulent kinetic energy decays to zero. The channel-flow results agree well with DNS data. Furthermore, the model is shown to be robust and approximately self-consistent. It also fulfils the requirements of realizability.


Author(s):  
Youjun Hu ◽  
Matthew T. Miecnikowski ◽  
Yang Chen ◽  
Scott E. Parker

The feasibility of using full ion kinetics, instead of gyrokinetics, in simulating low-frequency Ion-Temperature-Gradient (ITG) instabilities in tokamaks has recently been demonstrated by Sturdevant et al. [Physics of Plasmas 24, 081207 (2017)]. In that work, a variational integrator was developed to integrate the full orbits of ions in toroidal geometry, which proved to be accurate in capturing both the short-time scale cyclotron motion and long time scale drift motion. The present work extends that work in three aspects. First, we implement a relatively simple full orbit integrator, the Boris integrator, and demonstrate that the accuracy of this integrator is also sufficient for simulation of ITG instabilities. Second, the equilibrium magnetic configuration is extended to general toroidal configuration specified numerically, enabling simulation of realistic equilibria reconstructed from tokamak experiments. Third, we extend that work to the nonlinear regime and investigate the nonlinear saturation of ITG instabilities. To verify the new numerical implementation of the orbit integrator and magnetic configuration, the linear electrostatic ITG frequency and growth rate are compared with those given in Sturdevant's work and good agreement is found.


2020 ◽  
Vol 86 (5) ◽  
Author(s):  
Plamen G. Ivanov ◽  
A. A. Schekochihin ◽  
W. Dorland ◽  
A. R. Field ◽  
F. I. Parra

The saturated state of turbulence driven by the ion-temperature-gradient instability is investigated using a two-dimensional long-wavelength fluid model that describes the perturbed electrostatic potential and perturbed ion temperature in a magnetic field with constant curvature (a $Z$ -pinch) and an equilibrium temperature gradient. Numerical simulations reveal a well-defined transition between a finite-amplitude saturated state dominated by strong zonal-flow and zonal temperature perturbations, and a blow-up state that fails to saturate on a box-independent scale. We argue that this transition is equivalent to the Dimits transition from a low-transport to a high-transport state seen in gyrokinetic numerical simulations (Dimits et al., Phys. Plasmas, vol. 7, 2000, 969). A quasi-static staircase-like structure of the temperature gradient intertwined with zonal flows, which have patch-wise constant shear, emerges near the Dimits threshold. The turbulent heat flux in the low-collisionality near-marginal state is dominated by turbulent bursts, triggered by coherent long-lived structures closely resembling those found in gyrokinetic simulations with imposed equilibrium flow shear (van Wyk et al., J. Plasma Phys., vol. 82, 2016, 905820609). The breakup of the low-transport Dimits regime is linked to a competition between the two different sources of poloidal momentum in the system – the Reynolds stress and the advection of the diamagnetic flow by the $\boldsymbol {E}\times \boldsymbol {B}$ flow. By analysing the linear ion-temperature-gradient modes, we obtain a semi-analytic model for the Dimits threshold at large collisionality.


2017 ◽  
Vol 24 (10) ◽  
pp. 102317 ◽  
Author(s):  
A. Weikl ◽  
A. G. Peeters ◽  
F. Rath ◽  
S. R. Grosshauser ◽  
R. Buchholz ◽  
...  

2012 ◽  
Vol 19 (10) ◽  
pp. 102508 ◽  
Author(s):  
J. Chowdhury ◽  
S. Brunner ◽  
R. Ganesh ◽  
X. Lapillonne ◽  
L. Villard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document