scholarly journals Detection of Mismatch Repair Deficiency and Microsatellite Instability in Colorectal Adenocarcinoma by Targeted Next-Generation Sequencing

2017 ◽  
Vol 19 (1) ◽  
pp. 84-91 ◽  
Author(s):  
Jonathan A. Nowak ◽  
Matthew B. Yurgelun ◽  
Jacqueline L. Bruce ◽  
Vanesa Rojas-Rudilla ◽  
Dimity L. Hall ◽  
...  
2018 ◽  
Vol 31 (12) ◽  
pp. 1882-1890 ◽  
Author(s):  
David J. Papke ◽  
Jonathan A. Nowak ◽  
Matthew B. Yurgelun ◽  
Alexander Frieden ◽  
Amitabh Srivastava ◽  
...  

2019 ◽  
pp. 1-15
Author(s):  
Karen A. Cadoo ◽  
Diana L. Mandelker ◽  
Semanti Mukherjee ◽  
Carolyn Stewart ◽  
Deborah DeLair ◽  
...  

PURPOSE Mutations in DNA mismatch repair genes and PTEN, diagnostic of Lynch and Cowden syndromes, respectively, represent the only established inherited predisposition genes in endometrial cancer to date. The prevalence of other cancer predisposition genes remains unclear. We determined the prevalence of pathogenic germline variants in unselected patients with endometrial cancer scheduled for surgical consultation. PATIENTS AND METHODS Patients prospectively consented (April 2016 to May 2017) to an institutional review board–approved protocol of tumor-normal sequencing via a custom next-generation sequencing panel—the Memorial Sloan Kettering–Integrated Mutation Profiling of Actionable Cancer Targets—that yielded germline results for more than 75 cancer predisposition genes. Tumors were assessed for microsatellite instability. Per institutional standards, all tumors underwent Lynch syndrome screening via immunohistochemistry (IHC) for mismatch repair proteins. RESULTS Of 156 patients who consented to germline genetic testing, 118 (76%) had stage I disease. In 104 patients (67%), tumors were endometrioid, and 60 (58%) of those tumors were grade 1. Twenty-four pathogenic germline variants were identified in 22 patients (14%): seven (4.5%) had highly penetrant cancer syndromes and 15 (9.6%) had variants in low-penetrance, moderate-penetrance, or recessive genes. Of these, five (21%) were in Lynch syndrome genes (two MSH6, two PMS2, and one MLH1). All five tumors had concordant IHC staining; two (40%) were definitively microsatellite instability–high by next-generation sequencing. One patient had a known BRCA1 mutation, and one had an SMARCA4 deletion. The remaining 17 variants (71%) were incremental findings in low- and moderate-penetrance variants or genes associated with recessive disease. CONCLUSION In unselected patients with predominantly low-risk, early-stage endometrial cancer, germline multigene panel testing identified cancer predisposition gene variants in 14%. This finding may have implications for future cancer screening and risk-reduction recommendations. Universal IHC screening for Lynch syndrome successfully identifies the majority (71%) of high-penetrance germline mutations.


2017 ◽  
pp. 1-17 ◽  
Author(s):  
Sumit Middha ◽  
Liying Zhang ◽  
Khedoudja Nafa ◽  
Gowtham Jayakumaran ◽  
Donna Wong ◽  
...  

Purpose Microsatellite instability (MSI)/mismatch repair (MMR) status is increasingly important in the management of patients with cancer to predict response to immune checkpoint inhibitors. We determined MSI status from large-panel clinical targeted next-generation sequencing (NGS) data across various solid cancer types. Methods The MSI statuses of 12,288 advanced solid cancers consecutively sequenced with Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets clinical NGS assay were inferred by using MSIsensor, a program that reports the percentage of unstable microsatellites as a score. Cutoff score determination and sensitivity/specificity were based on MSI polymerase chain reaction (PCR) and MMR immunohistochemistry. Results By using an MSIsensor score ≥ 10 to define MSI high (MSI-H), 83 (8%) of 996 colorectal cancers (CRCs) and 42 (16%) of 260 uterine endometrioid cancers (UECs) were MSI-H. Validation against MSI PCR and/or MMR immunohistochemistry performed for 138 (24 MSI-H, 114 microsatellite stable [MSS]) CRCs, and 40 (15 MSI-H, 25 MSS) UECs showed a concordance of 99.4%. MSIsensor also identified 68 MSI-H/MMR-deficient (MMR-D) non-CRC/UECs. Of 9,591 non-CRC/UEC tumors with MSS MSIsensor status, 456 (4.8%) had slightly elevated scores (≥ 3 and < 10) of which 96.6% with available material were confirmed to be MSS by MSI PCR. MSI-H was also detected and confirmed in three non-CRC/UECs with low exonic mutation burden (< 20). MSIsensor correctly scored all 15 polymerase ε ultra-mutated cancers as negative for MSI. Conclusion MSI status can be reliably inferred by MSIsensor from large-panel targeted NGS data. Concurrent MSI testing by NGS is resource efficient, is potentially more sensitive for MMR-D than MSI PCR, and allows identification of MSI-H across various cancers not typically screened, as highlighted by the finding that 35% (68 of 193) of all MSI-H tumors were non-CRC/UEC.


2016 ◽  
Vol 5 (5) ◽  
pp. 929-941 ◽  
Author(s):  
Bente A. Talseth‐Palmer ◽  
Denis C. Bauer ◽  
Wenche Sjursen ◽  
Tiffany J. Evans ◽  
Mary McPhillips ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document