Thermodynamics of strain-induced crystallization in filled natural rubber under uni- and biaxial loadings, Part II: Physically-based constitutive theory

Author(s):  
V.N. Khiêm ◽  
J.B. Le Cam ◽  
S. Charlès ◽  
M. Itskov
RSC Advances ◽  
2016 ◽  
Vol 6 (98) ◽  
pp. 95601-95610 ◽  
Author(s):  
Yuko Ikeda ◽  
Preeyanuch Junkong ◽  
Takumi Ohashi ◽  
Treethip Phakkeeree ◽  
Yuta Sakaki ◽  
...  

Guayule and rubber dandelion natural rubbers are useful alternatives forHeveanatural rubber in terms of their strain-induced crystallization behaviours.


PAMM ◽  
2017 ◽  
Vol 17 (1) ◽  
pp. 493-494
Author(s):  
Lutz Zybell ◽  
Jan Domurath ◽  
Konrad Schneider

2021 ◽  
Vol 17 (3) ◽  
pp. 217-225
Author(s):  
Abdulhakim Masa ◽  
Nabil Hayeemasae ◽  
Siriwat Soontaranon ◽  
Mohd Hanif Mohd Pisal ◽  
Mohamad Syahmie Mohamad Rasidi

The performance of natural rubber (NR) relies heavily on the microstructural changes during deformation. This has brought to significant change in the stress response of NR. Besides, the stretching rate may also affect the stress response of NR. In this study, effects of stretching rate on tensile deformation and strain-induced crystallization of crosslinked NR were investigated. Results indicated that increasing the strain rate has increased the stress at given strain where the onset of strain-induced crystallization was shifted to a lower strain. The crystallinity of the crosslinked NR was shown to be higher at a high stretching rate and it corresponded well with the tensile response. The results clearly confirm that chain orientation and crystallization became stronger with increasing deformation rate. The study also suggests that the deformation could improve distribution of crosslinked network structures.


Sign in / Sign up

Export Citation Format

Share Document