tensile response
Recently Published Documents


TOTAL DOCUMENTS

265
(FIVE YEARS 81)

H-INDEX

29
(FIVE YEARS 5)

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 309
Author(s):  
Siyu Cai ◽  
Baoshuai Han ◽  
Yanjin Xu ◽  
Enyu Guo ◽  
Bin Sun ◽  
...  

Flight feather shafts are outstanding bioinspiration templates due to their unique light weight and their stiff and strong characteristics. As a thin wall of a natural composite beam, the keratinous cortex has evolved anisotropic features to support flight. Here, the anisotropic keratin composition, tensile response, dynamic properties of the cortex, and fracture behaviors of the shafts are clarified. The analysis of Fourier transform infrared (FTIR) spectra indicates that the protein composition of calamus cortex is almost homogeneous. In the middle and distal shafts (rachis), the content of the hydrogen bonds (HBs) and side-chain is the highest within the dorsal cortex and is consistently lower within the lateral wall. The tensile responses, including the properties and dominant damage pattern, are correlated with keratin composition and fiber orientation in the cortex. As for dynamic properties, the storage modulus and damping of the cortex are also anisotropic, corresponding to variation in protein composition and fibrous structure. The fracture behaviors of bent shafts include matrix breakage, fiber dissociation and fiber rupture on compressive dorsal cortex. To clarify, ‘real-time’ damage behaviors, and an integrated analysis between AE signals and fracture morphologies, are performed, indicating that calamus failure results from a straight buckling crack and final fiber rupture. Moreover, in the dorsal and lateral walls of rachis, the matrix breakage initially occurs, and then the propagation of the crack is restrained by ‘ligament-like’ fiber bundles and cross fiber, respectively. Subsequently, the further matrix breakage, interface dissociation and induced fiber rupture in the dorsal cortex result in the final failure.


Author(s):  
Dingfeng Xu ◽  
Mingliang Wang ◽  
Tianxin Li ◽  
Xiangsai Wei ◽  
Yiping Lu

The CoCrFeMnNi alloy is one of the most notable first-generation high-entropy alloys and is also known as a Cantor alloy. This alloy was first proposed in 2004 and shows promising performance at cryogenic temperatures (CTs). Subsequent research has indicated that the equiatomic ternary CoCrNi medium-entropy alloy (MEA), as a subset of the Cantor alloy family, has better mechanical properties than the CoCrFeMnNi alloy. Interestingly, both the strength and ductility of the CoCrNi MEA are higher at CTs than at room temperature. CoCrNi-based alloys have attracted considerable attention in the metallic materials community and it is therefore important to generalize and summarize the latest progress in CoCrNi-based MEA research. The present review initially briefly introduces the discovery of the CoCrNi MEA. Subsequently, its tensile response and deformation mechanisms are summarized. In particular, the effects of parameters, such as critical resolved shear stress, stacking fault energy and short-range ordering, on the deformation behavior are discussed in detail. The methods for strengthening the CoCrNi MEA are then reviewed and divided into two categories, namely, modifying microstructures and adjusting chemical compositions. In addition, the mechanical performance of CoCrNi-based MEAs, including their dynamic shear properties, creep behavior and fracture toughness, is also deliberated. Finally, the development prospects of CoCrNi-based MEAs are proposed.


Author(s):  
Giovanni Minafò ◽  
Maria Concetta Oddo ◽  
Lidia La Mendola

2021 ◽  
Vol 308 ◽  
pp. 124823
Author(s):  
Saulo Rocha Ferreira ◽  
Rodolfo Giacomim Mendes de Andrade ◽  
Eduardus Koenders ◽  
Flávio de Andrade Silva ◽  
Eduardo de Moraes Rego Fairbairn ◽  
...  

2021 ◽  
pp. 104138
Author(s):  
Chuanshuai Tian ◽  
Lu Dai ◽  
Dan Song ◽  
Dong Lei ◽  
Rui Xiao

Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3545
Author(s):  
Ved S. Vakharia ◽  
Lily Kuentz ◽  
Anton Salem ◽  
Michael C. Halbig ◽  
Jonathan A. Salem ◽  
...  

Affordable commercial desktop 3-D printers and filaments have introduced additive manufacturing to all disciplines of science and engineering. With rapid innovations in 3-D printing technology and new filament materials, material vendors are offering specialty multifunctional metal-reinforced polymers with unique properties. Studies are necessary to understand the effects of filament composition, metal reinforcements, and print parameters on microstructure and mechanical behavior. In this study, densities, metal vol%, metal cross-sectional area %, and microstructure of various metal-reinforced Polylactic Acid (PLA) filaments were characterized by multiple methods. Comparisons are made between polymer microstructures before and after printing, and the effect of printing on the metal-polymer interface adhesion has been demonstrated. Tensile response and fracture toughness as a function of metal vol% and print height was determined. Tensile and fracture toughness tests show that PLA filaments containing approximately 36 vol% of bronze or copper particles significantly reduce mechanical properties. The mechanical response of PLA with 12 and 18 vol% of magnetic iron and stainless steel particles, respectively, is similar to that of pure PLA with a slight decrease in ultimate tensile strength and fracture toughness. These results show the potential for tailoring the concentration of metal reinforcements to provide multi-functionality without sacrificing mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document