Single machine due window assignment and resource allocation scheduling problems with learning and general positional effects

2017 ◽  
Vol 43 ◽  
pp. 1-14 ◽  
Author(s):  
Lu Liu ◽  
Jian-Jun Wang ◽  
Feng Liu ◽  
Ming Liu
Author(s):  
Yu Tian

In this study, the due-window assignment single-machine scheduling problem with resource allocation is considered, where the processing time of a job is controllable as a linear or convex function of amount of resource allocated to the job. Under common due-window and slack due-window assignments, our goal is to determine the optimal sequence of all jobs, the due-window start time, due-window size, and optimal resource allocation such that a sum of the scheduling cost (including weighted earliness/tardiness penalty, weighted number of early and tardy job, weighted due-window start time, and due-window size) and resource consumption cost is minimized. We analyze the optimality properties, and provide polynomial time solutions to solve the problem under four versions of due-window assignment and resource allocation function.


2019 ◽  
Vol 52 (2) ◽  
pp. 185-193 ◽  
Author(s):  
Ji-Bo Wang ◽  
Bo Zhang ◽  
Lin Li ◽  
Danyu Bai ◽  
Yu-Bo Feng

2015 ◽  
Vol 32 (03) ◽  
pp. 1550014 ◽  
Author(s):  
Chuanli Zhao ◽  
Hengyong Tang

This paper considers a single machine scheduling with both deterioration and positional effects and due-window assignment problem. The job-dependent due-windows are obtained by the common flow allowance criterion. The objective is to schedule the jobs, and the due-windows so as to minimize the sum of earliness, tardiness, and due-window starting time and due-window size costs. We introduce a polynomial solution for the problem. Furthermore, we show how the solutions can be extended to the setting with job rejection.


2014 ◽  
Vol 31 (05) ◽  
pp. 1450036 ◽  
Author(s):  
Ji-Bo Wang ◽  
Ming-Zheng Wang

We consider a single-machine common due-window assignment scheduling problem, in which the processing time of a job is a function of its position in a sequence and its resource allocation. The window location and size, along with the associated job schedule that minimizes a certain cost function, are to be determined. This function is made up of costs associated with the window location, window size, earliness, and tardiness. For two different processing time functions, we provide a polynomial time algorithm to find the optimal job sequence and resource allocation, respectively.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Shan-Shan Lin

This paper studies single-machine due-window assignment scheduling problems with truncated learning effect and resource allocation simultaneously. Linear and convex resource allocation functions under common due-window (CONW) assignment are considered. The goal is to find the optimal due-window starting (finishing) time, resource allocations and job sequence that minimize a weighted sum function of earliness and tardiness, due window starting time, due window size, and total resource consumption cost, where the weight is position-dependent weight. Optimality properties and polynomial time algorithms are proposed to solve these problems.


Sign in / Sign up

Export Citation Format

Share Document