scholarly journals Polynomial traces and elementary symmetric functions in the latent roots of a non-central Wishart matrix

2020 ◽  
Vol 179 ◽  
pp. 104629
Author(s):  
Elvira Di Nardo
2012 ◽  
Vol 60 (2) ◽  
pp. 219-224 ◽  
Author(s):  
Alexander Kovačec ◽  
Salma Kuhlmann ◽  
Cordian Riener

10.37236/1877 ◽  
2005 ◽  
Vol 11 (2) ◽  
Author(s):  
J. Bell ◽  
A. M. Garsia ◽  
N. Wallach

We introduce here a new approach to the study of $m$-quasi-invariants. This approach consists in representing $m$-quasi-invariants as $N^{tuples}$ of invariants. Then conditions are sought which characterize such $N^{tuples}$. We study here the case of $S_3$ $m$-quasi-invariants. This leads to an interesting free module of triplets of polynomials in the elementary symmetric functions $e_1,e_2,e_3$ which explains certain observed properties of $S_3$ $m$-quasi-invariants. We also use basic results on finitely generated graded algebras to derive some general facts about regular sequences of $S_n$ $m$-quasi-invariants


10.37236/1547 ◽  
2000 ◽  
Vol 8 (1) ◽  
Author(s):  
Leigh Roberts

Recently Lapointe et. al. [3] have expressed Jack Polynomials as determinants in monomial symmetric functions $m_\lambda$. We express these polynomials as determinants in elementary symmetric functions $e_\lambda$, showing a fundamental symmetry between these two expansions. Moreover, both expansions are obtained indifferently by applying the Calogero-Sutherland operator in physics or quasi Laplace Beltrami operators arising from differential geometry and statistics. Examples are given, and comments on the sparseness of the determinants so obtained conclude the paper.


2017 ◽  
Vol 2 (4) ◽  
pp. 682-691 ◽  
Author(s):  
Wanxi Yang ◽  
◽  
Mao Li ◽  
Yulu Feng ◽  
Xiao Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document