fundamental symmetry
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 27)

H-INDEX

14
(FIVE YEARS 3)

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 137
Author(s):  
Vadim V. Varlamov ◽  
Larisa D. Pavlova ◽  
Olga S. Babushkina

The group theoretical description of the periodic system of elements in the framework of the Rumer–Fet model is considered. We introduce the concept of a single quantum system, the generating core of which is an abstract C*-algebra. It is shown that various concrete implementations of the operator algebra depend on the structure of the generators of the fundamental symmetry group attached to the energy operator. In the case of the generators of the complex shell of a group algebra of a conformal group, the spectrum of states of a single quantum system is given in the framework of the basic representation of the Rumer–Fet group, which leads to a group-theoretic interpretation of the Mendeleev’s periodic system of elements. A mass formula is introduced that allows giving the termwise mass splitting for the main multiplet of the Rumer–Fet group. The masses of elements of the Seaborg table (eight-periodic extension of the Mendeleev table) are calculated starting from the atomic number Z=3 and going to Z=220. The continuation of the Seaborg homology between lanthanides and actinides is established with the group of superactinides. A 10-periodic extension of the periodic table is introduced in the framework of the group-theoretic approach. The multiplet structure of the extended table’s periods is considered in detail. It is shown that the period lengths of the system of elements are determined by the structure of the basic representation of the Rumer–Fet group. The theoretical masses of the elements of 10th and 11th periods are calculated starting from Z=221 and going to to Z=364. The concept of hypertwistor is introduced.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ranran Cai ◽  
Yunyan Yao ◽  
Peng Lv ◽  
Yang Ma ◽  
Wenyu Xing ◽  
...  

AbstractFundamental symmetry breaking and relativistic spin–orbit coupling give rise to fascinating phenomena in quantum materials. Of particular interest are the interfaces between ferromagnets and common s-wave superconductors, where the emergent spin-orbit fields support elusive spin-triplet superconductivity, crucial for superconducting spintronics and topologically-protected Majorana bound states. Here, we report the observation of large magnetoresistances at the interface between a quasi-two-dimensional van der Waals ferromagnet Fe0.29TaS2 and a conventional s-wave superconductor NbN, which provides the possible experimental evidence for the spin-triplet Andreev reflection and induced spin-triplet superconductivity at ferromagnet/superconductor interface arising from Rashba spin-orbit coupling. The temperature, voltage, and interfacial barrier dependences of the magnetoresistance further support the induced spin-triplet superconductivity and spin-triplet Andreev reflection. This discovery, together with the impressive advances in two-dimensional van der Waals ferromagnets, opens an important opportunity to design and probe superconducting interfaces with exotic properties.


Author(s):  
Yue-Liang Wu

Starting from the motional property of functional field based on the action principle of path integral formulation while proposing maximum coherence motion principle and maximum locally entangled-qubits motion principle as guiding principles, we show that such a functional field as fundamental building block appears naturally as an entangled qubit-spinor field expressed by a locally entangled state of qubits. Its motion brings about the appearance of Minkowski space–time with dimension determined by the motion-correlation [Formula: see text]-spin charge and the emergence of [Formula: see text]-spin/hyperspin symmetry as fundamental symmetry. Intrinsic [Formula: see text]-spin charge displays a periodic feature as the mod 4 qubit number, which enables us to classify all entangled qubit-spinor fields and space–time dimensions into four categories with respect to four [Formula: see text]-spin charges [Formula: see text]. An entangled decaqubit-spinor field in 19-dimensional hyper-space–time is found to be a hyperunified qubit-spinor field which unifies all discovered leptons and quarks and brings on the existence of mirror lepton–quark states. The inhomogeneous hyperspin symmetry [Formula: see text] as hyperunified symmetry in association with inhomogeneous Lorentz-type symmetry [Formula: see text] and global scaling symmetry provides a unified fundamental symmetry. The maximum locally entangled-qubits motion principle is shown to lay the foundation of hyperunified field theory, which enables us to comprehend long-standing questions raised in particle physics and quantum field theory.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
P. Moskal ◽  
A. Gajos ◽  
M. Mohammed ◽  
J. Chhokar ◽  
N. Chug ◽  
...  

AbstractCharged lepton system symmetry under combined charge, parity, and time-reversal transformation (CPT) remains scarcely tested. Despite stringent quantum-electrodynamic limits, discrepancies in predictions for the electron–positron bound state (positronium atom) motivate further investigation, including fundamental symmetry tests. While CPT noninvariance effects could be manifested in non-vanishing angular correlations between final-state photons and spin of annihilating positronium, measurements were previously limited by knowledge of the latter. Here, we demonstrate tomographic reconstruction techniques applied to three-photon annihilations of ortho-positronium atoms to estimate their spin polarisation without magnetic field or polarised positronium source. We use a plastic-scintillator-based positron-emission-tomography scanner to record ortho-positronium (o-Ps) annihilations with single-event estimation of o-Ps spin and determine the complete spectrum of an angular correlation operator sensitive to CPT-violating effects. We find no violation at the precision level of 10−4, with an over threefold improvement on the previous measurement.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Vidhi Shingla ◽  
Sean A. Myers ◽  
Loren N. Pfeiffer ◽  
Kirk W. Baldwin ◽  
Gábor A. Csáthy

AbstractThe interplay of strong Coulomb interactions and of topology is currently under intense scrutiny in various condensed matter and atomic systems. One example of this interplay is the phase competition of fractional quantum Hall states and the Wigner solid in the two-dimensional electron gas. Here we report a Wigner solid at ν = 1.79 and its melting due to fractional correlations occurring at ν = 9/5. This Wigner solid, that we call the reentrant integer quantum Hall Wigner solid, develops in a range of Landau level filling factors that is related by particle-hole symmetry to the so called reentrant Wigner solid. We thus find that the Wigner solid in the GaAs/AlGaAs system straddles the partial filling factor 1/5 not only at the lowest filling factors, but also near ν = 9/5. Our results highlight the particle-hole symmetry as a fundamental symmetry of the extended family of Wigner solids and paint a complex picture of the competition of the Wigner solid with fractional quantum Hall states.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1525
Author(s):  
Simon Gluzman

We consider the problem of calculation of the critical amplitudes at infinity by means of the self-similar continued root approximants. Region of applicability of the continued root approximants is extended from the determinate (convergent) problem with well-defined conditions studied before by Gluzman and Yukalov (Phys. Lett. A 377 2012, 124), to the indeterminate (divergent) problem my means of power transformation. Most challenging indeterminate for the continued roots problems of calculating critical amplitudes, can be successfully attacked by performing proper power transformation to be found from the optimization imposed on the parameters of power transform. The self-similar continued roots were derived by systematically applying the algebraic self-similar renormalization to each and every level of interactions with their strength increasing, while the algebraic renormalization follows from the fundamental symmetry principle of functional self-similarity, realized constructively in the space of approximations. Our approach to the solution of the indeterminate problem is to replace it with the determinate problem, but with some unknown control parameter b in place of the known critical index β. From optimization conditions b is found in the way making the problem determinate and convergent. The index β is hidden under the carpet and replaced by b. The idea is applied to various, mostly quantum-mechanical problems. In particular, the method allows us to solve the problem of Bose-Einstein condensation temperature with good accuracy.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 501
Author(s):  
Titas Chanda ◽  
Rebecca Kraus ◽  
Giovanna Morigi ◽  
Jakub Zakrzewski

Topological materials have potential applications for quantum technologies. Non-interacting topological materials, such as e.g., topological insulators and superconductors, are classified by means of fundamental symmetry classes. It is instead only partially understood how interactions affect topological properties. Here, we discuss a model where topology emerges from the quantum interference between single-particle dynamics and global interactions. The system is composed by soft-core bosons that interact via global correlated hopping in a one-dimensional lattice. The onset of quantum interference leads to spontaneous breaking of the lattice translational symmetry, the corresponding phase resembles nontrivial states of the celebrated Su-Schriefer-Heeger model. Like the fermionic Peierls instability, the emerging quantum phase is a topological insulator and is found at half fillings. Originating from quantum interference, this topological phase is found in "exact" density-matrix renormalization group calculations and is entirely absent in the mean-field approach. We argue that these dynamics can be realized in existing experimental platforms, such as cavity quantum electrodynamics setups, where the topological features can be revealed in the light emitted by the resonator.


2021 ◽  
Author(s):  
Alex Belikov

Abstract In this work, we propose a variant of so-called informational semantics, a technique elaborated by Voishvillo, for two infectious logics, Deutsch’s ${\mathbf{S}_{\mathbf{fde}}}$ and Szmuc’s $\mathbf{dS}_{\mathbf{fde}}$. We show how the machinery of informational semantics can be effectively used to analyse truth and falsity conditions of disjunction and conjunction. Using this technique, it is possible to claim that disjunction and conjunction can be rightfully regarded as such, a claim which was disputed in the recent literature. Both ${\mathbf{S}_{\mathbf{fde}}}$ and $\mathbf{dS}_{\mathbf{fde}}$ are formalized in terms of natural deduction. This allows us to solve several problems: to develop a natural deduction calculus for ${\mathbf{S}_{\mathbf{fde}}}$ containing the standard form of disjunction elimination (in contrast to the calculus by Petrukhin), to introduce the first natural deduction calculus for $\mathbf{dS}_{\mathbf{fde}}$ and to reflect the fundamental symmetry between ${\mathbf{S}_{\mathbf{fde}}}$ and $\mathbf{dS}_{\mathbf{fde}}$ on proof-theoretical level forming a convenient basis for obtaining their well-known extensions $\mathbf{K}^{\mathbf{w}}_{\mathbf{3}}$ and $\mathbf{PWK}$.


Sign in / Sign up

Export Citation Format

Share Document