elementary symmetric functions
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 9)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Vol 66 (1) ◽  
pp. 1-19
Author(s):  
Huan-Nan Shi ◽  
◽  
Tao Zhang ◽  
Bo-Yan Xi ◽  
◽  
...  

In this paper, using the properties of Schur-convex function, Schur-geometrically convex function and Schur-harmonically convex function, we provide much simpler proofs of the Schur-convexity, Schur-geometric convexity on and Schur-harmonic convexity on for a composite function of the elementary symmetric functions.


Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 790 ◽  
Author(s):  
Pavel Trojovský

Symmetry and elementary symmetric functions are main components of the proof of the celebrated Hermite–Lindemann theorem (about the transcendence of e α , for algebraic values of α ) which settled the ancient Greek problem of squaring the circle. In this paper, we are interested in similar results, but for powers such as e γ log   n . This kind of problem can be posed in the context of arithmetic functions. More precisely, we study the arithmetic nature of the so-called γ-th arithmetic zeta function ζ γ ( n ) : = n γ ( = e γ log   n ), for a positive integer n and a complex number γ . Moreover, we raise a conjecture about the exceptional set of ζ γ , in the case in which γ is transcendental, and we connect it to the famous Schanuel’s conjecture.


10.37236/8930 ◽  
2020 ◽  
Vol 27 (1) ◽  
Author(s):  
Samantha Dahlberg ◽  
Adrian She ◽  
Stephanie Van Willigenburg

We prove that the chromatic symmetric function of any $n$-vertex tree containing a vertex of degree $d\geqslant \log _2n +1$ is not $e$-positive, that is, not a positive linear combination of elementary symmetric functions. Generalizing this, we also prove that the chromatic symmetric function of any $n$-vertex connected graph containing a cut vertex whose deletion disconnects the graph into $d\geqslant\log _2n +1$ connected components is not $e$-positive. Furthermore we prove that any $n$-vertex bipartite graph, including all trees, containing a vertex of degree greater than $\lceil \frac{n}{2}\rceil$ is not Schur-positive, namely not a positive linear combination of Schur functions. In complete generality, we prove that if an $n$-vertex connected graph has no perfect matching (if $n$ is even) or no almost perfect matching (if $n$ is odd), then it is not $e$-positive. We hence deduce that many graphs containing the claw are not $e$-positive.


2019 ◽  
Vol 15 (09) ◽  
pp. 1827-1855 ◽  
Author(s):  
Min Qiu ◽  
Shaofang Hong

Let [Formula: see text] and [Formula: see text] be positive integers. We denote by [Formula: see text] the 2-adic valuation of [Formula: see text]. The Stirling numbers of the first kind, denoted by [Formula: see text], count the number of permutations of [Formula: see text] elements with [Formula: see text] disjoint cycles. In recent years, Lengyel, Komatsu and Young, Leonetti and Sanna, and Adelberg made some progress on the study of the [Formula: see text]-adic valuations of [Formula: see text]. In this paper, by introducing the concept of [Formula: see text]th Stirling numbers of the first kind and providing a detailed 2-adic analysis, we show an explicit formula on the 2-adic valuation of [Formula: see text]. We also prove that [Formula: see text] holds for all integers [Formula: see text] between 1 and [Formula: see text]. As a corollary, we show that [Formula: see text] if [Formula: see text] is odd and [Formula: see text]. This confirms partially a conjecture of Lengyel raised in 2015. Furthermore, we show that if [Formula: see text], then [Formula: see text] and [Formula: see text], where [Formula: see text] stands for the [Formula: see text]th elementary symmetric functions of [Formula: see text]. The latter one supports the conjecture of Leonetti and Sanna suggested in 2017.


Symmetry ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 887 ◽  
Author(s):  
Pavel Trojovský

The elementary symmetric functions play a crucial role in the study of zeros of non-zero polynomials in C [ x ] , and the problem of finding zeros in Q [ x ] leads to the definition of algebraic and transcendental numbers. Recently, Marques studied the set of algebraic numbers in the form P ( T ) Q ( T ) . In this paper, we generalize this result by showing the existence of algebraic numbers which can be written in the form P 1 ( T ) Q 1 ( T ) ⋯ P n ( T ) Q n ( T ) for some transcendental number T, where P 1 , … , P n , Q 1 , … , Q n are prescribed, non-constant polynomials in Q [ x ] (under weak conditions). More generally, our result generalizes results on the arithmetic nature of z w when z and w are transcendental.


2018 ◽  
Vol 70 (6) ◽  
pp. 1373-1389 ◽  
Author(s):  
Aleksandr Tuxanidy ◽  
Qiang Wang

AbstractWe give a new proof of the Hansen–Mullen irreducibility conjecture. The proof relies on an application of a (seemingly new) sufficient condition for the existence of elements of degree n in the support of functions on finite fields. This connection to irreducible polynomials is made via the least period of the discrete Fourier transform (DFT) of functions with values in finite fields. We exploit this relation and prove, in an elementary fashion, that a relevant function related to the DFT of characteristic elementary symmetric functions (that produce the coefficients of characteristic polynomials) satisfies a simple requirement on the least period. This bears a sharp contrast to previous techniques employed in the literature to tackle the existence of irreducible polynomials with prescribed coefficients.


Sign in / Sign up

Export Citation Format

Share Document