Network activity in hippocampal slice cultures revealed by long-term in vitro recordings

2013 ◽  
Vol 217 (1-2) ◽  
pp. 1-8 ◽  
Author(s):  
Klaus Albus ◽  
Uwe Heinemann ◽  
Richard Kovács
2000 ◽  
Vol 84 (6) ◽  
pp. 2918-2932 ◽  
Author(s):  
Suzanne B. Bausch ◽  
James O. McNamara

Limbic status epilepticus and preparation of hippocampal slice cultures both produce cell loss and denervation. This commonality led us to hypothesize that morphological and physiological alterations in hippocampal slice cultures may be similar to those observed in human limbic epilepsy and animal models. To test this hypothesis, we performed electrophysiological and morphological analyses in long-term ( postnatal day 11; 40–60 days in vitro) organotypic hippocampal slice cultures. Electrophysiological analyses of dentate granule cell excitability revealed that granule cells in slice cultures were hyperexcitable compared with acute slices from normal rats. In physiological buffer, spontaneous electrographic granule cell seizures were seen in 22% of cultures; in the presence of a GABAA receptor antagonist, seizures were documented in 75% of cultures. Hilar stimulation evoked postsynaptic potentials (PSPs) and multiple population spikes in the granule cell layer, which were eliminated by glutamate receptor antagonists, demonstrating the requirement for excitatory synaptic transmission. By contrast, under identical recording conditions, acute hippocampal slices isolated from normal rats exhibited a lack of seizures, and hilar stimulation evoked an isolated population spike without PSPs. To examine the possibility that newly formed excitatory synaptic connections to the dentate gyrus contribute to granule cell hyperexcitability in slice cultures, anatomical labeling and electrophysiological recordings following knife cuts were performed. Anatomical labeling of individual dentate granule, CA3 and CA1 pyramidal cells with neurobiotin illustrated the presence of axonal projections that may provide reciprocal excitatory synaptic connections among these regions and contribute to granule cell hyperexcitability. Knife cuts severing connections between CA1 and the dentate gyrus/CA3c region reduced but did not abolish hilar-evoked excitatory PSPs, suggesting the presence of newly formed, functional synaptic connections to the granule cells from CA1 and CA3 as well as from neurons intrinsic to the dentate gyrus. Many of the electrophysiological and morphological abnormalities reported here for long-term hippocampal slice cultures bear striking similarities to both human and in vivo models, making this in vitro model a simple, powerful system to begin to elucidate the molecular and cellular mechanisms underlying synaptic rearrangements and epileptogenesis.


2011 ◽  
Vol 114 (1) ◽  
pp. 49-57 ◽  
Author(s):  
Brian P. Lemkuil ◽  
Brian P. Head ◽  
Matthew L. Pearn ◽  
Hemal H. Patel ◽  
John C. Drummond ◽  
...  

Background The mechanisms by which isoflurane injured the developing brain are not clear. Recent work has demonstrated that it is mediated in part by activation of p75 neurotrophin receptor. This receptor activates RhoA, a small guanosine triphosphatase that can depolymerize actin. It is therefore conceivable that inhibition of RhoA or prevention of cytoskeletal depolymerization might attenuate isoflurane neurotoxicity. This study was conducted to test these hypotheses using primary cultured neurons and hippocampal slice cultures from neonatal mouse pups. Methods Primary neuron cultures (days in vitro, 4-7) and hippocampal slice cultures from postnatal day 4-7 mice were exposed to 1.4% isoflurane (4 h). Neurons were pretreated with TAT-Pep5, an intracellular inhibitor of p75 neurotrophin receptor, the cytoskeletal stabilizer jasplakinolide, or their corresponding vehicles. Hippocampal slice cultures were pretreated with TAT-Pep5 before isoflurane exposure. RhoA activation was evaluated by immunoblot. Cytoskeletal depolymerization and apoptosis were evaluated with immunofluorescence microscopy using drebrin and cleaved caspase-3 staining, respectively. Results RhoA activation was increased after 30 and 120 min of isoflurane exposure in neurons; TAT-Pep5 (10 μm) decreased isoflurane-mediated RhoA activation at both time intervals. Isoflurane decreased drebrin immunofluorescence and enhanced cleaved caspase-3 in neurons, effects that were attenuated by pretreatment with either jasplakinolide (1 μm) or TAT-Pep5. TAT-Pep5 attenuated the isoflurane-mediated decrease in phalloidin immunofluorescence. TAT-Pep5 significantly attenuated isoflurane-mediated loss of drebrin immunofluorescence in hippocampal slices. Conclusions Isoflurane results in RhoA activation, cytoskeletal depolymerization, and apoptosis. Inhibition of RhoA activation or prevention of downstream actin depolymerization significantly attenuated isoflurane-mediated neurotoxicity in developing neurons.


2016 ◽  
Vol 33 (7) ◽  
pp. 652-661 ◽  
Author(s):  
Edward W. Vogel ◽  
Gwen B. Effgen ◽  
Tapan P. Patel ◽  
David F. Meaney ◽  
Cameron R. “Dale” Bass ◽  
...  

1997 ◽  
Vol 77 (5) ◽  
pp. 2851-2855 ◽  
Author(s):  
Dominique Debanne ◽  
Beat H. Gähwiler ◽  
Scott M. Thompson

Debanne, Dominique, Beat H. Gähwiler, and Scott M. Thompson. Bidirectional associative plasticity of unitary CA3-CA1 EPSPs in the rat hippocampus in vitro. J. Neurophysiol. 77: 2851–2855, 1997. Associative long-term potentiation (LTP) and depression of compound and unitary CA3-CA1 excitatory postsynaptic potentials (EPSPs) were investigated in rat hippocampal slice cultures. The induction of LTP with synchronous pairing of synaptic activation and postsynaptic depolarization resulted in an increase in the amplitude of EPSPs to the same absolute level, regardless of whether the input was naive or had been previously depressed by asynchronous pairing of pre- and postsynaptic activity. Saturated LTP of compound and unitary EPSPs was reversed by asynchronous pairing and could be reinduced by synchronous pairing. The likelihood that an action potential in a presynaptic CA3 cell failed to trigger an unitary EPSP in a postsynaptic CA1 cell decreased after induction of associative potentiation and increased after induction of associative depotentiation. These changes in the rate of transmission failures were accompanied by large changes in the amplitude of nonfailure EPSPs. We conclude that the same CA3-CA1 synapses can alternatively undergo associative potentiation and depression, perhaps through opposite changes in a single expression mechanism.


2013 ◽  
Vol 9 ◽  
pp. P434-P435
Author(s):  
Renata Novotny ◽  
Franziska Langer ◽  
Yvonne Eisele ◽  
Matthias Staufenbiel ◽  
B. Heimrich ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document