rhoa activation
Recently Published Documents


TOTAL DOCUMENTS

276
(FIVE YEARS 47)

H-INDEX

47
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Alvin Joselin ◽  
Yasmilde Rodríguez González ◽  
Fatemeh Kamkar ◽  
Paymaan Jafar-nejad ◽  
Suzi Wang ◽  
...  

Cyclin Dependent Kinase family members include members of the non-cell cycle CDK, such as PFTK1/Eip63E. Eip63E expresses primarily in postnatal and adult nervous system in Drosophila melanogaster but its role in CNS development remains unknown. We sought to understand its role in the CNS by studying the fly ventral nerve cord during development. Eip63E regulates axogenesis in neurons and its deficiency leads to neuronal defects. We describe a functional interaction between Eip63E and Rho1. Studies in cultured cortical neurons from PFTK1 knockout mice, confirmed that PFTK1 plays a role in axonal outgrowth and its deficiency resulted in faster growing axons. We demonstrate that GDP bound RhoA is a substrate of PFTK1 and this phosphorylation resulted in higher activity of RhoA. In conclusion, our work represents the first steps in the characterization of the neuronal functions of PFTK1 and points to RhoA activation in the regulation of PFTK1 mediated axogenesis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Malarvizhi Gurusamy ◽  
Denise Tischner ◽  
Jingchen Shao ◽  
Stephan Klatt ◽  
Sven Zukunft ◽  
...  

AbstractG-protein-coupled receptors (GPCRs), especially chemokine receptors, play a central role in the regulation of T cell migration. Various GPCRs are upregulated in activated CD4 T cells, including P2Y10, a putative lysophospholipid receptor that is officially still considered an orphan GPCR, i.e., a receptor with unknown endogenous ligand. Here we show that in mice lacking P2Y10 in the CD4 T cell compartment, the severity of experimental autoimmune encephalomyelitis and cutaneous contact hypersensitivity is reduced. P2Y10-deficient CD4 T cells show normal activation, proliferation and differentiation, but reduced chemokine-induced migration, polarization, and RhoA activation upon in vitro stimulation. Mechanistically, CD4 T cells release the putative P2Y10 ligands lysophosphatidylserine and ATP upon chemokine exposure, and these mediators induce P2Y10-dependent RhoA activation in an autocrine/paracrine fashion. ATP degradation impairs RhoA activation and migration in control CD4 T cells, but not in P2Y10-deficient CD4 T cells. Importantly, the P2Y10 pathway appears to be conserved in human T cells. Taken together, P2Y10 mediates RhoA activation in CD4 T cells in response to auto-/paracrine-acting mediators such as LysoPS and ATP, thereby facilitating chemokine-induced migration and, consecutively, T cell-mediated diseases.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jella-Andrea Abraham ◽  
Stefan Blaschke ◽  
Samar Tarazi ◽  
Georg Dreissen ◽  
Sabine U. Vay ◽  
...  

The neural stem cell (NSC) niche is a highly vascularized microenvironment that supplies stem cells with relevant biological and chemical cues. However, the NSCs’ proximity to the vasculature also means that the NSCs are subjected to permanent tissue deformation effected by the vessels’ heartbeat-induced pulsatile movements. Cultivating NSCs under common culture conditions neglects the—yet unknown—influence of this cyclic mechanical strain on neural stem cells. Under the hypothesis that pulsatile strain should affect essential NSC functions, a cyclic uniaxial strain was applied under biomimetic conditions using an in-house developed stretching system based on cross-linked polydimethylsiloxane (PDMS) elastomer. While lineage commitment remained unaffected by cyclic deformation, strain affected NSC quiescence and cytoskeletal organization. Unexpectedly, cyclically stretched stem cells aligned in stretch direction, a phenomenon unknown for other types of cells in the mammalian organism. The same effect was observed for young astrocytes differentiating from NSCs. In contrast, young neurons differentiating from NSCs did not show mechanoresponsiveness. The exceptional orientation of NSCs and young astrocytes in the stretch direction was blocked upon RhoA activation and went along with a lack of stress fibers. Compared to postnatal astrocytes and mature neurons, NSCs and their young progeny displayed characteristic and distinct mechanoresponsiveness. Data suggest a protective role of young astrocytes in mixed cultures of differentiating neurons and astrocytes by mitigating the mechanical stress of pulsatile strain on developing neurons.


2021 ◽  
Author(s):  
Jingjing Ding ◽  
Chao Wang ◽  
Qiaodong Wei ◽  
Shoukang Du ◽  
Xiaobo Gong ◽  
...  

AbstractAs cells enter mitosis, cell cortex contraction generates surface tension to establish a geometry feasible for division in a physically confined environment. Cell surface tension rises in prophase and continues to stay constant during metaphase to support mitosis. How the cell surface tension is maintained throughout mitosis is not well explored. We show that the cell surface tension is actively maintained by a mechanosensitive RhoA pathway at the cell cortex during mitosis. Mechanical activation of RhoA leads to non-muscle myosin IIB (NMIIB) stabilization and mechanosensitive accumulation at the cell cortex via Rho kinase (ROCK) regulation of the NMIIB head domain. Interestingly, when the NMIIB tail domain regulation is perturbed, the NMIIB has reduced ability to generate tension but could still support mitotic cells to withstand compressive stress by undergoing mechanosensitive accumulation at the cell cortex. Thus, mechanical RhoA activation drives NMIIB mechanoresponse via its head domain regulation to maintain cell surface tension during mitosis.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Jie Mei ◽  
Yan Liu ◽  
Xinqian Yu ◽  
Leiyu Hao ◽  
Tao Ma ◽  
...  

AbstractDishevelled-associated activator of morphogenesis 1 (DAAM1) is a critical driver in facilitating metastasis in breast cancer (BrCa). However, molecular mechanisms for the regulation of DAAM1 activation are only partially elucidated. In this research, the expression levels of YWHAZ and DAAM1 were examined by immunohistochemistry (IHC) staining in BrCa tissues. The functional roles of tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (YWHAZ)–DAAM1 axis and their regulator microRNA-613 (miR-613) in BrCa cells and associated molecular mechanisms were demonstrated in vitro. As results, the expression levels of DAAM1 and YWHAZ were significantly upregulated in BrCa tissues compared with normal tissues and remarkably associated with poor prognosis. Besides, DAAM1 and YWHAZ were positively correlated with each other in BrCa tissues. YWHAZ interacted and colocalized with DAAM1 in BrCa cells, which was essential for DAAM1-mediated microfilament remodeling and RhoA activation. Moreover, miR-613 directly targeted both YWHAZ and DAAM1, contributing to inhibiting BrCa cells migration via blocking the complex of YWHAZ–DAAM1. To sum up, these data reveal that YWHAZ regulates DAAM1 activation, and the YWHAZ–DAAM1 complex is directly targeted by the shared post-transcriptional regulator miR-613.


Development ◽  
2021 ◽  
Author(s):  
Marlis Denk-Lobnig ◽  
Jan F Totz ◽  
Natalie C Heer ◽  
Jörn Dunkel ◽  
Adam C Martin

During development, gene expression regulates cell mechanics and shape to sculpt tissues. Epithelial folding proceeds through distinct cell shape changes that occur simultaneously in different regions of a tissue. Here, using quantitative imaging in Drosophila melanogaster, we investigate how patterned cell shape changes promote tissue bending during early embryogenesis. We find that the transcription factors Twist and Snail combinatorially regulate a multicellular pattern of lateral F-actin density that differs from the previously described myosin-2 gradient. This F-actin pattern correlates with whether cells apically constrict, stretch, or maintain their shape. We show that the myosin-2 gradient and F-actin depletion do not depend on force transmission, suggesting that transcriptional activity is required to create these patterns. The myosin-2 gradient width results from a gradient in RhoA activation that is refined through the balance between RhoGEF2 and the RhoGAP C-GAP. Our experimental results and simulations of a 3D elastic shell model show that tuning gradient width regulates tissue curvature.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Lucia Sophie Kilian ◽  
Jakob Voran ◽  
Derk Frank ◽  
Ashraf Yusuf Rangrez

AbstractThe Ras homolog gene family member A (RhoA) is the founding member of Rho GTPase superfamily originally studied in cancer cells where it was found to stimulate cell cycle progression and migration. RhoA acts as a master switch control of actin dynamics essential for maintaining cytoarchitecture of a cell. In the last two decades, however, RhoA has been coined and increasingly investigated as an essential molecule involved in signal transduction and regulation of gene transcription thereby affecting physiological functions such as cell division, survival, proliferation and migration. RhoA has been shown to play an important role in cardiac remodeling and cardiomyopathies; underlying mechanisms are however still poorly understood since the results derived from in vitro and in vivo experiments are still inconclusive. Interestingly its role in the development of cardiomyopathies or heart failure remains largely unclear due to anomalies in the current data available that indicate both cardioprotective and deleterious effects. In this review, we aimed to outline the molecular mechanisms of RhoA activation, to give an overview of its regulators, and the probable mechanisms of signal transduction leading to RhoA activation and induction of downstream effector pathways and corresponding cellular responses in cardiac (patho)physiology. Furthermore, we discuss the existing studies assessing the presented results and shedding light on the often-ambiguous data. Overall, we provide an update of the molecular, physiological and pathological functions of RhoA in the heart and its potential in cardiac therapeutics.


2021 ◽  
Vol 22 (6) ◽  
pp. 2839
Author(s):  
Asfia Soomro ◽  
Jackie Trink ◽  
Kian O’Neil ◽  
Renzhong Li ◽  
Safaa Naiel ◽  
...  

Diabetic kidney disease (DKD) is the leading cause of kidney failure. RhoA/Rho-associated protein kinase (ROCK) signaling is a recognized mediator of its pathogenesis, largely through mediating the profibrotic response. While RhoA activation is not feasible due to the central role it plays in normal physiology, ROCK inhibition has been found to be effective in attenuating DKD in preclinical models. However, this has not been evaluated in clinical studies as of yet. Alternate means of inhibiting RhoA/ROCK signaling involve the identification of disease-specific activators. This report presents evidence showing the activation of RhoA/ROCK signaling both in vitro in glomerular mesangial cells and in vivo in diabetic kidneys by two recently described novel pathogenic mediators of fibrosis in DKD, activins and cell-surface GRP78. Neither are present in normal kidneys. Activin inhibition with follistatin and neutralization of cell-surface GRP78 using a specific antibody blocked RhoA activation in mesangial cells and in diabetic kidneys. These data identify two novel RhoA/ROCK activators in diabetic kidneys that can be evaluated for their efficacy in inhibiting the progression of DKD.


Sign in / Sign up

Export Citation Format

Share Document