scholarly journals The cross number of minimal zero-sum sequences in finite abelian groups

2015 ◽  
Vol 157 ◽  
pp. 99-122 ◽  
Author(s):  
Bumsoo Kim
1996 ◽  
Vol 150 (1-3) ◽  
pp. 123-130 ◽  
Author(s):  
Alfred Geroldinger ◽  
Rudolf Schneider

1994 ◽  
Vol 15 (4) ◽  
pp. 399-405 ◽  
Author(s):  
Alfred Geroldinger ◽  
Rudolf Schneider

2021 ◽  
Vol 163 (2) ◽  
pp. 317-332
Author(s):  
Jiangtao Peng ◽  
Yuanlin Li ◽  
Chao Liu ◽  
Meiling Huang

2013 ◽  
Vol 34 (8) ◽  
pp. 1331-1337 ◽  
Author(s):  
Yushuang Fan ◽  
Weidong Gao ◽  
Linlin Wang ◽  
Qinghai Zhong

Integers ◽  
2012 ◽  
Vol 12 (4) ◽  
Author(s):  
Weidong Gao ◽  
Linlin Wang

Abstract.Letdenote the cross number ofWe determine


2019 ◽  
Vol 342 (12) ◽  
pp. 111617
Author(s):  
Dongchun Han ◽  
Hanbin Zhang

10.37236/899 ◽  
2008 ◽  
Vol 15 (1) ◽  
Author(s):  
Jujuan Zhuang

Let $G=C_{n_1}\oplus \ldots \oplus C_{n_r}$ be a finite abelian group with $r=1$ or $1 < n_1|\ldots|n_r$, and let $S=(a_1,\ldots,a_t)$ be a sequence of elements in $G$. We say $S$ is an unextendible sequence if $S$ is a zero-sum free sequence and for any element $g\in G$, the sequence $Sg$ is not zero-sum free any longer. Let $L(G)=\lceil \log_2{n_1}\rceil+\ldots+\lceil \log_2{n_r}\rceil$ and $d^*(G)=\sum_{i=1}^r(n_i-1)$, in this paper we prove, among other results, that the minimal length of an unextendible sequence in $G$ is not bigger than $L(G)$, and for any integer $k$, where $L(G)\leq k \leq d^*(G)$, there exists at least one unextendible sequence of length $k$.


Sign in / Sign up

Export Citation Format

Share Document