Life Cycle Assessment (LCA) of Phase Change Materials (PCMs) for building applications: A review

2016 ◽  
Vol 6 ◽  
pp. 133-143 ◽  
Author(s):  
Angeliki Kylili ◽  
Paris A. Fokaides
2013 ◽  
Vol 101 ◽  
pp. 600-608 ◽  
Author(s):  
Albert Castell ◽  
Karim Menoufi ◽  
Alvaro de Gracia ◽  
Lídia Rincón ◽  
Dieter Boer ◽  
...  

2010 ◽  
Vol 42 (9) ◽  
pp. 1517-1523 ◽  
Author(s):  
Alvaro de Gracia ◽  
Lídia Rincón ◽  
Albert Castell ◽  
Melanie Jiménez ◽  
Dieter Boer ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3045 ◽  
Author(s):  
Roberta Di Bari ◽  
Rafael Horn ◽  
Björn Nienborg ◽  
Felix Klinker ◽  
Esther Kieseritzky ◽  
...  

New materials and technologies have become the main drivers for reducing energy demand in the building sector in recent years. Energy efficiency can be reached by utilization of materials with thermal storage potential; among them, phase change materials (PCMs) seem to be promising. If they are used in combination with solar collectors in heating applications or with water chillers or in chilled ceilings in cooling applications, PCMs can provide ecological benefits through energy savings during the building’s operational phase. However, their environmental value should be analyzed by taking into account their whole lifecycle. The purpose of this paper is the assessment of PCMs at the material level as well as at higher levels, namely the component and building levels. Life cycle assessment analyses are based on information from PCM manufacturers and building energy simulations. With the newly developed software “Storage LCA Tool” (Version 1.0, University of Stuttgart, IABP, Stuttgart, Germany), PCM storage systems can be compared with traditional systems that do not entail energy storage. Their benefits can be evaluated in order to support decision-making on energy concepts for buildings. The collection of several case studies shows that PCM energy concepts are not always advantageous. However, with conclusive concepts, suitable storage dimensioning and ecologically favorable PCMs, systems can be realized that have a lower environmental impact over the entire life cycle compared to traditional systems.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4146
Author(s):  
Agnieszka Jachura ◽  
Robert Sekret

This paper presents an environmental impact assessment of the entire cycle of existence of the tube-vacuum solar collector prototype. The innovativeness of the solution involved using a phase change material as a heat-storing material, which was placed inside the collector’s tubes-vacuum. The PCM used in this study was paraffin. The system boundaries contained three phases: production, operation (use phase), and disposal. An ecological life cycle assessment was carried out using the SimaPro software. To compare the environmental impact of heat storage, the amount of heat generated for 15 years, starting from the beginning of a solar installation for preparing domestic hot water for a single-family residential building, was considered the functional unit. Assuming comparable production methods for individual elements of the ETC and waste management scenarios, the reduction in harmful effects on the environment by introducing a PCM that stores heat inside the ETC ranges from 17 to 24%. The performed analyses have also shown that the method itself of manufacturing the materials used for the construction of the solar collector and the choice of the scenario of the disposal of waste during decommissioning the solar collector all play an important role in its environmental assessment. With an increase in the application of the advanced technologies of materials manufacturing and an increase in the amount of waste subjected to recycling, the degree of the solar collector’s environmental impact decreased by 82% compared to its standard manufacture and disposal.


2020 ◽  
Vol 993 ◽  
pp. 1473-1480
Author(s):  
Yan Jiao Zhang ◽  
Li Ping Ma ◽  
Shi Wei Ren ◽  
Meng Chi Huang ◽  
Ying Wang ◽  
...  

With the emphasis of national policies on green manufacturing and the recognition of the people for green development, expanding the green assessment of products will be the general trend. In this study the life cycle assessment method was used to compile a list of resources, energy consumption and pollutant emissions during the life cycle of typical ordinary gypsum plasterboard and functional phase-change gypsum plasterboard, the key environmental impact indicators of both products during the life cycle calculated, the key stages affecting the environmental performance of products analyzed and identified, and the difference in environmental impacts between phase-change gypsum plasterboard and ordinary gypsum plasterboard compared and analyzed, for guiding the selection of green building materials and the development of ecological building materials. The results show that the global warming potential of phase-change gypsum plasterboard is 3.42 kgCO2 equivalent/m2, the non-renewable resource depletion potential is 2.25×10-5 kgSb equivalent/m2, the respiratory inorganic is 1.97×10-3 kgPM2.5 equivalent/m2, the eutrophication is 1.21×10-3 kgPO43- equivalent/m2, and the acidification is 9.47×10-3 kgSO2 equivalent/m2. Compared with ordinary gypsum plasterboard, the phase-change gypsum plasterboard shows the biggest increase by 874.03% in non-renewable resource depletion potential. The major environmental impact of ordinary gypsum plasterboard in the life cycle is mainly from energy use, and the transport process is the main stage of eutrophication. The use of phase-change materials in the phase-change gypsum plasterboard is the main stage causing environmental impact.


Sign in / Sign up

Export Citation Format

Share Document