depletion potential
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 20)

H-INDEX

17
(FIVE YEARS 2)

Author(s):  
Sushil M. Chaudhari ◽  
Rohit B. Meshram

This paper includes a cradle-to-gate life cycle impact evaluation of gasoline blends in India. The potential environmental impacts of gasoline blends with three major components, i.e., methanol, ethanol, and n-butanol are assessed. The production of methanol from the natural gas reforming process, ethanol from hydrogenation with nitric acid, and n-butanol from the oxo process are considered in the current study. The results show that the gasoline blending with methanol has the lowest impact (11 categories) and is nearly constant from 5 to 15%. For gasoline with ethanol as an additive, the global warming potential, ozone depletion potential, and abiotic depletion potential rise with increasing ethanol addition. Meanwhile, increasing ethanol addition reduces the acidification potential and terrestric ecotoxicity potential impact of gasoline blends. Similarly, gasoline with n-butanol as an additive has higher acidification potential, eutrophication potential, human toxicity potential, terrestric ecotoxicity potential, marine aquatic ecotoxicity potential, and photochemical ozone creation potential compared to methanol and ethanol.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6721
Author(s):  
Andrea J. Boero ◽  
Kevin Kardux ◽  
Marina Kovaleva ◽  
Daniel A. Salas ◽  
Jacco Mooijer ◽  
...  

In recent years, several researchers have studied the potential use of ammonia (NH3) as an energy vector, focused on the techno-economic advantages and challenges for full global deployment. The use of ammonia as fuel is seen as a strategy to support decarbonization; however, to confirm the sustainability of the shift to ammonia as fuel in thermal engines, a study of the environmental profile is needed. This paper aims to assess the environmental life cycle impacts of ammonia-based electricity generated in a combined heat and power cycle for different ammonia production pathways. A cradle-to-gate assessment was developed for both ammonia production and ammonia-based electricity generation. The results show that electrolysis-based ammonia from renewable and nuclear energy have a better profile in terms of global warming potential (0.09–0.70 t CO2-eq/t NH3), fossil depletion potential (3.62–213.56 kg oil-eq/t NH3), and ozone depletion potential (0.001–0.082 g CFC-11-eq/t NH3). In addition, surplus heat for district or industrial applications offsets some of the environmental burden, such as a more than 29% reduction in carbon footprint. In general, ammonia-based combined heat and power production presents a favorable environmental profile, for example, the carbon footprint ranges from −0.480 to 0.003 kg CO2-eq/kWh.


2021 ◽  
Vol 13 (8) ◽  
pp. 4298
Author(s):  
Edyta Baran ◽  
Sebastian Czernik ◽  
Mariusz Hynowski ◽  
Bartosz Michałowski ◽  
Michał Piasecki ◽  
...  

The ongoing global climate change and the associated environmental degradation pose a threat to Europe and the rest of the world. Raw materials and energy are required to produce building materials, which are used for construction purposes. Resulting buildings and structures generate waste during construction, operation, and demolition, and they emit potentially harmful substances. Thus, the key to achieving climate goals is to support low-emission materials and technologies in the construction sector, significantly impacting the environment. In the European Union, building materials are not yet subject to mandatory sustainability assessment during the assessment and verification of constancy of performance (AVCP). Objective evaluation of construction materials’ environmental impact requires it to be carried out based on production data on an industrial scale. This article presents the environmental impact of premixed gypsum-based plasters, commonly used in modern construction. Nine environmental indicators (global warming potential (GWP), depletion potential of the stratospheric ozone layer (ODP), acidification potential (AP), eutrophication potential (EP), formation potential of tropospheric ozone (POCP), abiotic depletion potential (ADP)-elements, ADP-fossil fuels, renewable primary energy resources (PERT), and nonrenewable primary energy resources (PERNT)) of premixed gypsum plasters based on natural and flue gas desulfurization (FGD) gypsum were estimated and discussed. Knowledge of the construction products’ environmental impact is fundamental for creating reliable databases. AVCP of construction materials in the future will use the data collected during the voluntary environmental impact evaluation.


2021 ◽  
Vol 6 (3) ◽  
pp. 014-023
Author(s):  
Anusha Peyyala ◽  
M. Naga Swapna ◽  
B. Purna Chandra Sekhar ◽  
B. Sunil

In this project an air conditioner was fabricated using R-410a as refrigerant and its COP is calculated. CFCs have been phased out, except for essential users, and HCFCs are to be eliminated by 2020, because of their ozone depletion potential.This generates a need for the investigation of zero ozone depletion potential (ODP) refrigerants or refrigerant blends.R410A is among newer brand of refrigerant blend, with zero ODP. The biggest difference to R22 is the pressure levels generated which are more than50% higher. The refrigerant R410A operates at higher pressure at the same saturated temperatures than R22, therefore system should be re designed. The overall COP of the system is 5 to 6% more than the R22. We also calculated the relative humidity of room air after it gets cooled, heat removed from the air by considering the input data from weather online which provides us the day to day climatic conditions. Present work provides us regarding performance of an self fabricated zeotropic air conditioner.


2020 ◽  
Vol 12 (21) ◽  
pp. 8945 ◽  
Author(s):  
Thiago Melo Grabois ◽  
Lucas Rosse Caldas ◽  
Nathália Rodrigues Julião ◽  
Romildo Dias Toledo Filho

Construction and demolition waste generation have increased significantly over the century, many times, as a result of obsolete buildings that lead the effort toward demolition. This paper investigates the environmental performance of mortars developed with recycled concrete from the partial building demolition of the Clementino Fraga Filho University Hospital in Rio de Janeiro, Brazil. Life Cycle Assessment is associated with experimental data to validate the application of the residue as an alternative to cement-based mortars. Natural river sand and recycled concrete aggregates, both at a micrometer scale, are employed in the production of four different mortars of compressive strength ranging 50 MPa. The aggregates’ replacement rates defined are 15, 25, and 50% in volume. The recycled microparticles’ mineralogical composition was determined by SEM images and XRD analysis. In addition, the attached cement paste surrounding the original aggregate particle was quantified by chemical attack. Rheological and mechanical properties of the resulting mortars were assessed by the Vane spindle rheometer and uniaxial compressive strength experiments, respectively. The approach to mortars’ environmental performance considered a cradle-to-gate scope using different sensitivity analysis parameters. We demonstrated the feasibility of developing an eco-efficient mortar taking advantage of rarely applied recycled particles. Compressive strength and environmental performance (particularly, the ozone layer depletion potential and abiotic resource depletion potential categories) increased with the aggregate replacement rate. In addition, the rheological results provided relevant data, still insufficient to recycled aggregate mortars, presenting an exponential increase of yield stress with effective water to cement ratio.


2020 ◽  
Vol 10 (21) ◽  
pp. 7503
Author(s):  
Seungjun Roh ◽  
Rakhyun Kim ◽  
Won-Jun Park ◽  
Hoki Ban

This study aims to compare the potential environmental impact of the manufacture and production of recycled and by-product aggregates based on a life cycle assessment and to evaluate the environmental impact and cost when they are used as aggregates in concrete. To this end, the six potential environmental impacts (i.e., abiotic depletion potential, global warming potential, ozone-layer depletion potential, acidification potential, photochemical ozone creation potential, and eutrophication potential) of the manufacture and production of natural sand, natural gravel, recycled aggregate, slag aggregate, bottom ash aggregate, and waste glass aggregate were compared using information from life cycle inventory databases. Additionally, the environmental impacts and cost were evaluated when these aggregates were used to replace 30% of the fine and coarse aggregates in concrete with a design strength of 24 MPa. The environmental impact of concrete that incorporated slag aggregate as the fine aggregates or bottom ash aggregate as the coarse aggregates were lower than that of concrete that incorporated natural aggregate. However, concrete that incorporated bottom ash aggregate as the fine aggregates demonstrated relatively high environmental impacts. Based on these environmental impacts, the environmental cost was found to range from 5.88 to 8.79 USD/m3.


2020 ◽  
Vol 12 (19) ◽  
pp. 8096
Author(s):  
Won-Jun Park ◽  
Rakhyun Kim ◽  
Seungjun Roh ◽  
Hoki Ban

The purpose of this study was to identify the major wastes generated during the construction phase using a life cycle assessment. To accomplish this, the amount of waste generated in the construction phase was deduced using the loss rate and weight conversions. Major construction wastes were assessed using six comprehensive environmental impact categories, including global warming potential, abiotic depletion potential, acidification potential, eutrophication potential, ozone depletion potential, and photochemical ozone creation potential. According to the analysis results, five main construction wastes—concrete, rebar, cement, polystyrene panel, and concrete block—comprehensively satisfied the 95% cutoff criteria for all six environmental impact categories. The results of the environmental impact characterization assessment revealed that concrete, concrete block, and cement waste accounted for over 70% of the contribution level in all the environmental impact categories except resource depletion. Insulation materials accounted for 1% of the total waste generated but were identified by the environmental impact assessment to have the highest contribution level.


2020 ◽  
Vol 142 (10) ◽  
Author(s):  
Ali Erdogan Karaca ◽  
Ibrahim Dincer ◽  
Junjie Gu

Abstract This paper evaluates the impacts of nuclear ammonia synthesis options on the environment through the life cycle assessment (LCA) technique. Ammonia is synthesized via the mature Haber–Bosch technique that combines hydrogen and nitrogen with 3:1 ratio to yield ammonia. For hydrogen production from water, five different hydrogen production methods are used, namely, conventional electrolysis (CE), high-temperature electrolysis (HTE), and 3-, 4-, and 5-step Cu–Cl cycles. The nitrogen required for ammonia synthesis is extracted from the air by the cryogenic air separation technique. The thermal and electrical energy need of production processes is supplied from a pressurized water reactor type nuclear power plant (NPP). The simapro software is utilized for LCA in the present study. The environmental impacts of nuclear ammonia are investigated through five impact categories, namely, abiotic depletion potential, acidification potential, global warming potential (GWP), ozone depletion potential, and human toxicity potential. According to LCA results, ammonia synthesis via HTE corresponds to the lowest environmental impact in all selected impact categories. Furthermore, the GWP for ammonia production via HTE is 0.1832 kg CO2 eq/kg ammonia, followed by CE (0.2240 kg CO2 eq/kg ammonia), 4-step Cu–Cl (0.3113 kg CO2 eq/kg ammonia), 3-step Cu–Cl (0.3323 kg CO2 eq/kg ammonia), and 5-step Cu–Cl (0.3370 kg CO2 eq/kg ammonia).


Sign in / Sign up

Export Citation Format

Share Document