scholarly journals Accuracy and safety of robot-assisted and fluoroscopy-guided for pedicle screw placement: a meta-analysis

2020 ◽  
Vol 28 ◽  
pp. S256
Author(s):  
P. Li ◽  
Y. Gao ◽  
X. Che ◽  
P. Han
Neurosurgery ◽  
2019 ◽  
Vol 66 (Supplement_1) ◽  
Author(s):  
Jordan Cory ◽  
Mohammed A Awad ◽  
Richard G Bittar

Abstract INTRODUCTION Robot-assisted surgery has emerged as an innovative and minimally-invasive technique, touted as superior to the traditional free-hand technique of pedicle screw fixation in spinal fusion surgery. Complications of misplaced pedicle screws include inadequate fixation and surgical failure requiring revision, neural injury, cerebrospinal fluid (CSF) leak, vascular injury, and facet joint trauma with sequela of adjacent segment disease. Literature reports an incidence of pedicle screw misplacement in up to 10% with free-hand technique. Robot-assisted surgery has reported superiority with increased accuracy of pedicle screw placement and reduced complication rates. This prospective multi-institutional single cohort analysis reports the outcomes in robot-assisted spinal fusion surgery in Melbourne, Australia over 4 yr. METHODS Data was prospectively collected from 2015 to 2019 from robot-assisted spinal surgeries performed by 2 surgeons across 2 institutions. Postoperative spinal computed tomography (CT) scan was compared to preoperative CT based planning to determine the accuracy of pedicle screw placement to 0.1 mm. Accurate pedicle screw placement was defined as within 2.0 mm from the target. Intraoperative radiation exposure time, operative time and length of hospital stay were also collected. RESULTS The total number of cases was 164 and the total number of screws placed was 744. Accurate pedicle screw placement was 98.65%. Average intraoperative radiation exposure time was 9.9 s. Average operative time for single-level surgery was 74 min. The average length of hospital stay was 2.4 d. CONCLUSION The authors conclude that robot-assisted pedicle screw placement is a safe and highly accurate adjunct to spinal surgery. While robot-assisted spinal surgery significantly improves patient outcomes with reduced patient morbidity and revision rates, it has limitations in primary capital expenditure, consumable costs and, in training and accreditation. It is the authors’ opinion that the robot-assisted spinal surgery technique requires nuanced patient selection and expertise in the traditional free-hand method is still essential in the event of technological failure.


Sign in / Sign up

Export Citation Format

Share Document