scholarly journals Pairwise correlations via quantum discord and its geometric measure in a four-qubit spin chain

2013 ◽  
Vol 21 (1) ◽  
pp. 68-74 ◽  
Author(s):  
Abdel-Baset A. Mohamed
2011 ◽  
Vol 09 (07n08) ◽  
pp. 1773-1786 ◽  
Author(s):  
GERARDO ADESSO ◽  
DAVIDE GIROLAMI

We extend the geometric measure of quantum discord, introduced and computed for two-qubit states, to quantify non-classical correlations in composite Gaussian states of continuous variable systems. We lay the formalism for the evaluation of a Gaussian geometric discord in two-mode Gaussian states, and present explicit formulas for the class of two-mode squeezed thermal states. In such a case, under physical constraints of bounded mean energy, geometric discord is shown to admit upper and lower bounds for a fixed value of the conventional (entropic) quantum discord. We finally discuss alternative geometric approaches to quantify Gaussian quadrature correlations.


2012 ◽  
Vol 85 (2) ◽  
Author(s):  
Ali Saif M. Hassan ◽  
Behzad Lari ◽  
Pramod S. Joag

2013 ◽  
Vol 11 (02) ◽  
pp. 1350018 ◽  
Author(s):  
BO LIU ◽  
KANG XUE ◽  
GANGCHENG WANG ◽  
CHUNFANG SUN ◽  
LIDAN GOU ◽  
...  

We investigate quantum discord of the "q-deformed" Werner state via Yang–Baxterization approach. There are two parameters q and u in this "q-deformed" Werner state. The parameter u, which plays an important role in some typical models, is related to the probability of the "q-deformed" two-qubit spin singlet state in this study. The "q-deformed" parameter q is related to the single loop through d = q + q-1. When topological parameter d approaches 2 (i.e. q → 1), the "q-deformed" Werner state degenerates into the well-known Werner state. The results show that topological parameter d has great influence on quantum correlations of the "q-deformed" Werner state. When we fix the parameter u, the quantum correlations decrease with increasing the single loop d. When d approaches +∞ (i.e. q → 0+ or +∞), quantum discord, geometric measure of quantum discord and entanglement all tend to 0. While d approaches 2 (i.e. q → 1), all of them just have the same results with the Werner state.


Open Physics ◽  
2015 ◽  
Vol 13 (1) ◽  
Author(s):  
Ai-Xi Chen ◽  
Jian-Song Zhang

AbstractWe investigate the effects of phase shift on entanglement, quantum discord, geometric discord, and spinsqueezing of a Heisenberg chain under dephasing. An analytical solution of the present model is obtained. Our results show that the initial correlations of the spin chain could be partially stored for a long time in the presence of dephasing and the amount of steady state correlations can be adjusted via phase shift. Particularly, we find the effects of phase shift on quantum discord and geometric discord are not always the same, i.e., the increase of geometric discord does not always imply the increase of quantum discord. Then, we calculate the spin-squeezing of the spin chain and find that spin-squeezing first increases with time and then reaches a plateau. The amount of spin-squeezing can be controlled via phase shift.


2015 ◽  
Vol 22 (04) ◽  
pp. 1550023
Author(s):  
M. Daoud ◽  
W. Kaydi ◽  
H. El Hadfi

We investigate the influence of photon excitations on quantum correlations in tripartite Glauber coherent states of Greenberger-Horne-Zeilinger type (GHZ-type). The pairwise correlations are measured by means of the entropy-based quantum discord. We also analyze the monogamy property of quantum discord in this class of tripartite states in terms of the strength of Glauber coherent states and the photon excitation order.


2012 ◽  
Vol 171 (3) ◽  
pp. 870-878 ◽  
Author(s):  
Shunlong Luo ◽  
Shuangshuang Fu

Sign in / Sign up

Export Citation Format

Share Document