spin singlet
Recently Published Documents


TOTAL DOCUMENTS

336
(FIVE YEARS 55)

H-INDEX

37
(FIVE YEARS 4)

2022 ◽  
Vol 7 (1) ◽  
Author(s):  
Gyanendra Singh ◽  
Claudio Guarcello ◽  
Edouard Lesne ◽  
Dag Winkler ◽  
Tord Claeson ◽  
...  

AbstractTwo-dimensional SrTiO3-based interfaces stand out among non-centrosymmetric superconductors due to their intricate interplay of gate-tunable Rashba spin-orbit coupling and multi-orbital electronic occupations, whose combination theoretically prefigures various forms of non-standard superconductivity. By employing superconducting transport measurements in nano-devices we present strong experimental indications of unconventional superconductivity in the LaAlO3/SrTiO3 interface. The central observations are the substantial anomalous enhancement of the critical current by small magnetic fields applied perpendicularly to the plane of electron motion, and the asymmetric response with respect to the magnetic field direction. These features cannot be accommodated within a scenario of canonical spin-singlet superconductivity. We demonstrate that the experimental observations can be described by a theoretical model based on the coexistence of Josephson channels with intrinsic phase shifts. Our results exclude a time-reversal symmetry breaking scenario and suggest the presence of anomalous pairing components that are compatible with inversion symmetry breaking and multi-orbital physics.


2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Halima Giovanna Ahmad ◽  
Martina Minutillo ◽  
Roberto Capecelatro ◽  
Avradeep Pal ◽  
Roberta Caruso ◽  
...  

AbstractThe increased capabilities of coupling more and more materials through functional interfaces are paving the way to a series of exciting experiments and extremely advanced devices. Here we focus on the capability of magnetically inhomogeneous superconductor/ferromagnet (S/F) interfaces to generate spin-polarized triplet pairs. We build on previous achievements on spin-filter ferromagnetic Josephson junctions (JJs) and find direct correspondence between neat experimental benchmarks in the temperature behavior of the critical current and theoretical modelling based on microscopic calculations, which allow to determine a posteriori spin-singlet and triplet correlation functions. This kind of combined analysis provides an accurate proof of the coexistence and tunability of singlet and triplet transport. This turns to be a powerful way to model disorder and spin-mixing effects in a JJ to enlarge the space of parameters, which regulate the phenomenology of the Josephson effect and could be applied to a variety of hybrid JJs.


Author(s):  
MengYao Li ◽  
Yang Yang ◽  
Jingguo Hu ◽  
TingMin Liu ◽  
Yong Chun Tao

Abstract We present an anomalous Josephson effect in a TI-based Josephson junction with a ferromagnetic insulator (FI) trilayer which has noncoplanar magnetizations. It is shown that there exist equal spin-singlet and -triplet correlations due to the magnetism-tuning chiral Dirac energy band structure combined with the spin precession and selective equal spin Andreev reflection by chiral Majorana modes (CMMs). The consequent anomalous Josephson supercurrent is exhibited, in which a 0-π or similar 0 - π state transition through phase shift is induced only by exchange field strengths of the first FI region, while the ϕ0 supercurrent and the maximum one gradually drop with the increase of exchange field strengths of the second and third FI regions without relative state transitions. The much different features are found by varying the lengths of trilayer. The Andreev bound states without hybridization for the CMM administrate these features, which could be used to probe and confirm the zero energy CMM. In addition, the corresponding free energies are presented and discussed.


Author(s):  
MengYao Li ◽  
Qingyun Yu ◽  
Jingguo Hu ◽  
TingMin Liu ◽  
Yong Chun Tao ◽  
...  

Abstract Recently, theory and experiment both have confirmed a Majorana zero mode to induce selective equal spin Andreev reflection (SESAR). Herein, we theoretically present controllable chiral Majorana modes (CMMs) by noncollinear magnetic configuration in a Josephson junction on a topological insulator with two ferromagnetic insulators (FIs) sandwiched in between two superconductors (SCs). It is shown that an additional phase shift is induced by the different chirality of the CMMs at the two FI/SC interfaces, whose magnitude is determined by misorientational angle θ, which can be administrated by the Andreev bound surface energies. The angle θ is found to result in the 0-π state transition and Φ0 supercurrent. Particularly, due to the SESAR, the coexistence of fully spin-polarized spin-singlet and -triplet correlations is exhibited with the exclusive fully spin-polarized spin-triplet (singlet) correlation corresponding to the ferromagnetic (F) [antiferromagnetic (AF)] configuration. For the two magnetizations only along y-axis, there exist no additional phase shift and topological supercurrent with fully spin-polarized correlations, especially, the supercurrent in the AF configuration is a lot larger than that in the F one, which is strongly dependent on the exchange field strength and FI length, thus even leading to 100% supercurrent magnetoresistance. The results can be employed to not only identify the topological SCs but also design a perfect topological supercurrent spin valve device.


2021 ◽  
Author(s):  
Alexej Jerschow ◽  
Boris Kharkov ◽  
Xueyou Duan ◽  
Jyrki Rantaharju ◽  
Mohamed Sabba ◽  
...  

Nuclear spin singlet states are often found to allow long lived storage of nuclear magnetization, which can form the basis of novel applications in spectroscopy, imaging, and in studies of dynamic processes. Precisely how long such polarization remains intact, and which factors affect its lifetime is often difficult to determine and predict. We present a combined experimental/computational study to demonstrate that molecular dynamics simulations and ab initio calculations can be used to fully account for the experimentally observed singlet lifetimes in an organic molecule in solution. %Intermolecular interactions with Cl nuclei of the chloroform solvent are shown to contribute significantly to the relaxation. Paramagnetic relaxation due to dissolved oxygen is taken into account in a self-consistent manner. The correspondence between experiment and simulations is achieved without adjustable parameters. These studies highlight the importance of considering unusual and difficult-to-control mechanisms, such as dipolar couplings to low-gamma solvent nuclei, and to residual paramagnetic species, which often can represent lifetime limiting factors. These results also point to the power of molecular dynamics simulations to provide insights into little-known NMR relaxation mechanisms.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Minoru Yamashita ◽  
Shiori Sugiura ◽  
Akira Ueda ◽  
Shun Dekura ◽  
Taichi Terashima ◽  
...  

AbstractWe perform magnetic susceptibility and magnetic torque measurements on the organic κ-(BEDT-TTF)2Hg(SCN)2Br, which is recently suggested to host an exotic quantum dipole-liquid in its low-temperature insulating phase. Below the metal-insulator (MI) transition temperature, the magnetic susceptibility follows a Curie–Weiss law with a positive Curie–Weiss temperature, and a particular $$M\propto \sqrt{H}$$ M ∝ H curve is observed. The emergent ferromagnetically interacting spins amount to about 1/6 of the full spin moment of localized charges. Taking account of the possible inhomogeneous quasi-charge-order that forms a dipole-liquid, we construct a model of antiferromagnetically interacting spin chains in two adjacent charge-ordered domains, which are coupled via fluctuating charges on a Mott-dimer at the boundary. We find that the charge fluctuations can draw a weak ferromagnetic moment out of the spin singlet domains.


2021 ◽  
pp. 107101
Author(s):  
Stephen J. DeVience ◽  
Ronald L. Walsworth ◽  
Matthew S. Rosen

2021 ◽  
Vol 47 (10) ◽  
pp. 823-829
Author(s):  
S. V. Kuplevakhsky ◽  
S. V. Bengus

Crystals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1154
Author(s):  
Kazuya Kubo ◽  
Mamoru Sadahiro ◽  
Sonomi Arata ◽  
Norihisa Hoshino ◽  
Tomofumi Kadoya ◽  
...  

The effects of substituents on the arrangement of metal–dithiolene complexes based on π-conjugated systems, which are extensively used to synthesize various functional materials, have not been studied adequately. New donor-type nickel–dithiolene complexes fused with bulky cycloalkane substituents [Ni(Cn-dddt)2] (C5-dddt = 4a,5,6,6a-pentahydro-1,4-benzodithiin-2,3-dithiolate; C6-dddt = 4a,5,6,7,8,8a-hexahydro-1,4-benzodithiin-2,3-dithiolate; C7-dddt = 4a,5,6,7,8,9,9a-heptahydro-1,4-benzodithiin-2,3-dithiolate; and C8-dddt = 4a,5,6,7,8,9,10,10a-octahydro-1,4-benzodithiin-2,3-dithiolate) were synthesized in this study. All the complexes were crystallized in cis-[Ni(cis-Cn-dddt)2] conformations with cis-oriented (R,S) conformations around the cycloalkylene groups in the neutral state. Unique molecular arrangements with a three-dimensional network, a one-dimensional column, and a helical molecular arrangement were formed in the crystals owing to the flexible cycloalkane moieties. New 2:1 cation radical crystals of [Ni(C5-dddt)2]2(X) (X = ClO4− or PF6−), obtained by electrochemical crystallization, exhibited semiconducting behaviors (ρrt = 0.8 Ω cm, Ea = 0.09 eV for the ClO4− crystal; 4.0 Ω cm, 0.13 eV for the PF6− crystal) under ambient pressure due to spin-singlet states between the dimers of the donor, which were in accordance with the conducting behaviors under hydrostatic pressure (ρrt = 0.2 Ω cm, Ea = 0.07 eV for the ClO4− crystal; 1.0 Ω cm, 0.12 eV for the PF6− crystal at 2.0 GPa).


Sign in / Sign up

Export Citation Format

Share Document