classical correlations
Recently Published Documents


TOTAL DOCUMENTS

162
(FIVE YEARS 37)

H-INDEX

30
(FIVE YEARS 4)

2021 ◽  
Vol 104 (6) ◽  
Author(s):  
Jie Zhu ◽  
Yue Dai ◽  
S. Camalet ◽  
Cheng-Jie Zhang ◽  
Bi-Heng Liu ◽  
...  

Photonics ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 525
Author(s):  
Zhi-Hao Bian ◽  
Hui Wu

Quantum entanglement is one of the essential resources in quantum information processing. It is of importance to verify whether a quantum state is entangled. At present, a typical quantum certification focused on the classical correlations has attracted widespread attention. Here, we experimentally investigate the relation between quantum entanglement and the classical complementary correlations based on the mutual information, Pearson correlation coefficient and mutual predictability of two-qubit states. Our experimental results show the classical correlations for complementary properties have strong resolution capability to verify entanglement for two qubit pure states and Werner states. We find that the resolution capability has great performance improvement when the eigenstates of the measurement observables constitute a complete set of mutually unbiased bases. For Werner states in particular, the classical complementary correlations based on the Pearson correlation coefficient and mutual predictability can provide the ultimate bounds to certify entanglement.


2021 ◽  
Vol 21 (15&16) ◽  
pp. 1274-1295
Author(s):  
A.G. Abdelwahab ◽  
A. Ghwail ◽  
N. Metwally ◽  
M.H. Mahran ◽  
A. -S. F. Obada

The local and non local behavior of the accelerated Gisin state are investigated either before or after filtering process. It is shown that, the possibility of predicting the non-local behavior is forseen at large values of the weight of the Gisin and acceleration parameters. Due to the filtering process, the non-locality behavior of the Gisin state is predicted at small values of the weight parameter. The amount of non classical correlations are quantified by means of the local quantum uncertainty (LQU)and the concurrence, where the LQU is more sensitive to the non-locality than the concurrence. The phenomenon of the sudden changes is displayed for both quantifiers. Our results show that, the accelerated Gisin state could be used to mask information, where all the possible partitions of the masked state satisfy the masking criteria. Moreover, there is a set of states, which satisfy the masking condition, that is generated between each qubit and its masker qubit. For this set, the amount of the non-classical correlations increases as the acceleration parameter increases . Further, the filtering process improves these correlations, where their maximum bounds are much larger than those depicted for non-filtered states.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Dengke Qu ◽  
Kunkun Wang ◽  
Lei Xiao ◽  
Xiang Zhan ◽  
Peng Xue

AbstractContextuality is a phenomenon at the heart of quantum mechanics different from classical behavior and has been recently identified as a resource in quantum information processing. Experimental demonstration of contextuality is thus an important goal. We experimentally demonstrate a test of state-independent contextuality in a four-dimensional Hilbert space with single photons and violate the inequality by at least 387 standard deviations. Despite imperfections and possible measurement disturbance, our results cannot be explained in non-contextual models. We also provide a theoretical analysis of a test of contextuality with a coherent light field and show how the definitions affect the emergence of non-classical correlations. Our result sheds new light on the conflict between quantum and classical physics.


2021 ◽  
Vol 118 (25) ◽  
pp. e2104114118
Author(s):  
Caitlin Walsh ◽  
Maxime Charlebois ◽  
Patrick Sémon ◽  
Giovanni Sordi ◽  
André-Marie S. Tremblay

A key open issue in condensed-matter physics is how quantum and classical correlations emerge in an unconventional superconductor from the underlying normal state. We study this problem in a doped Mott insulator with information-theory tools on the two-dimensional (2D) Hubbard model at finite temperature with cluster dynamical mean-field theory. We find that the local entropy detects the superconducting state and that the difference in the local entropy between the superconducting and normal states follows the same difference in the potential energy. We find that the thermodynamic entropy is suppressed in the superconducting state and monotonically decreases with decreasing doping. The maximum in entropy found in the normal state above the overdoped region of the superconducting dome is obliterated by superconductivity. The total mutual information, which quantifies quantum and classical correlations, is amplified in the superconducting state of the doped Mott insulator for all doping levels and shows a broad peak versus doping, as a result of competing quantum and classical effects.


2021 ◽  
Vol 103 (5) ◽  
Author(s):  
Saptarshi Roy ◽  
Shiladitya Mal ◽  
Aditi Sen(De)

2021 ◽  
pp. 2150074
Author(s):  
Youssef Khedif ◽  
Mohammed Daoud

We investigate the quantum correlations of a two-qubit XYZ Heisenberg spin-1/2 chain model with Dzyaloshinskii–Moriya interaction. The two-qubit system is considered in thermal equilibrium. The variations of logarithmic negativity, uncertainty-induced quantum nonlocality (UIN) and trace distance discord, versus the parameters characterizing the system, are analyzed. The results show that the UIN measure captures quantum correlations that cannot be revealed by entanglement and trace discord. We also show that the Dzyaloshinskii–Moriya interaction enhances the non-classical correlations between the spins and can weaken the undesirable destructive effects of thermal fluctuations. In addition, an entangled–unentangled phase transition can be detected from the behavior of logarithmic negativity.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Takanori Anegawa ◽  
Norihiro Iizuka ◽  
Kotaro Tamaoka ◽  
Tomonori Ugajin

Abstract We study a class of decoherence process which admits a 3 dimensional holographic bulk. Starting from a thermo-field double dual to a wormhole, we prepare another thermo-field double which plays the role of environment. By allowing the energy flow between the original and environment thermo-field double, the entanglement of the original thermo-field double eventually decoheres. We model this decoherence by four-boundary wormhole geometries, and study the time-evolution of the moduli parameters to see the change of the entanglement pattern among subsystems. A notable feature of this holographic decoherence processes is that at the end point of the processes, the correlations of the original thermo-field double are lost completely both classically and also quantum mechanically. We also discuss distinguishability between thermo-field double state and thermo mixed double state, which contains only classical correlations, and construct a code subspace toy model for that.


PRX Quantum ◽  
2020 ◽  
Vol 1 (2) ◽  
Author(s):  
C. Walsh ◽  
P. Sémon ◽  
D. Poulin ◽  
G. Sordi ◽  
A.-M. S. Tremblay

Sign in / Sign up

Export Citation Format

Share Document