singlet state
Recently Published Documents


TOTAL DOCUMENTS

1028
(FIVE YEARS 69)

H-INDEX

58
(FIVE YEARS 5)

Author(s):  
Zhicheng Shi ◽  
Cheng Zhang ◽  
Du Ran ◽  
Yan Xia ◽  
Reuven Ianconescu ◽  
...  

Abstract In this work, we propose a composite pulses scheme by modulating phases to achieve high fidelity population transfer in three-level systems. To circumvent the obstacle that not enough variables are exploited to eliminate the systematic errors in the transition probability, we put forward a cost function to find the optimal value. The cost function is independently constructed either in ensuring an accurate population of the target state, or in suppressing the population of the leakage state, or both of them. The results demonstrate that population transfer is implemented with high fidelity even when existing the deviations in the coupling coefficients. Furthermore, our composite pulses scheme can be extensible to arbitrarily long pulse sequences. As an example, we employ the composite pulses sequence for achieving the three-atom singlet state in an atom-cavity system with ultrahigh fidelity. The final singlet state shows robustness against deviations and is not seriously affected by waveform distortions. Also, the singlet state maintains a high fidelity under the decoherence environment.


2022 ◽  
Vol 130 (1) ◽  
pp. 138
Author(s):  
В.П. Дресвянский ◽  
С.А. Зилов ◽  
Е.Ф. Мартынович

Single F2 and F3+- color centers in the LiF crystal were studied by confocal fluorescence microscopy. The time dependences of their fluorescence intensity were analyzed and statistically processed. Our studies show that, the F3+- color center, being photoexcited, is able enter the triplet state, while in ground (singlet) state it changes orientation with a frequency of 1.5 – 2 Hz at room temperature, due to reorientational diffusion, unlike the F2- center, which is reoriented only being in the triplet state. This subtype of rotational diffusion of the center does not lead to its translational diffusion.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7621
Author(s):  
Jack Dalton ◽  
Gareth W. Richings ◽  
Jack M. Woolley ◽  
Temitope T. Abiola ◽  
Scott Habershon ◽  
...  

Para-hydroxy methylcinnamate is part of the cinnamate family of molecules. Experimental and computational studies have suggested conflicting non-radiative decay routes after photoexcitation to its S1(ππ*) state. One non-radiative decay route involves intersystem crossing mediated by an optically dark singlet state, whilst the other involves direct intersystem crossing to a triplet state. Furthermore, irrespective of the decay mechanism, the lifetime of the initially populated S1(ππ*) state is yet to be accurately measured. In this study, we use time-resolved ion-yield and photoelectron spectroscopies to precisely determine the S1(ππ*) lifetime for the s-cis conformer of para-hydroxy methylcinnamate, combined with time-dependent density functional theory to determine the major non-radiative decay route. We find the S1(ππ*) state lifetime of s-cis para-hydroxy methylcinnamate to be ∼2.5 picoseconds, and the major non-radiative decay route to follow the [1ππ*→1nπ*→3ππ*→S0] pathway. These results also concur with previous photodynamical studies on structurally similar molecules, such as para-coumaric acid and methylcinnamate.


2021 ◽  
Author(s):  
Marc Alías Rodríguez ◽  
Coen De Graaf ◽  
Miquel Huix-Rotllant

Most aromatic ketones containing first-row elements undergo unexpectedly fast intersystem crossing in few tens of picoseconds and a quantum yield close to unity. Among them, xanthone (9H-xanthen-9-one) possesses one of the fastest singlet-triplet rates of ~1.5 ps. The exact mechanism of this unusually fast transition is still under debate. Here, we perform the wavepacket dynamics of the photochemistry of xanthone in the gas phase and in polar solvents. We show that xanthone follows El-Sayed's rule for intersystem crossing. From the second singlet excited state, the mechanism is sequential: (i) an internal conversion between singlets 1pipi*-1npi* (85 fs), (ii) an intersystem crossing 1npi*-3pipi* (2.0 ps), and (iii) an internal conversion between triplets 3pipi*-3npi* (602 fs). Each transfer finds its origin in a barrierless access to electronic state intersections. These intersections are close to minimum energy structures, allowing for efficient transitions from the initial singlet state to the triplets.


2021 ◽  
pp. 103-156
Author(s):  
Michael Janas ◽  
Michael E. Cuffaro ◽  
Michel Janssen
Keyword(s):  

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
A. Kreisel ◽  
C. A. Marques ◽  
L. C. Rhodes ◽  
X. Kong ◽  
T. Berlijn ◽  
...  

AbstractThe single-layered ruthenate Sr2RuO4 is one of the most enigmatic unconventional superconductors. While for many years it was thought to be the best candidate for a chiral p-wave superconducting ground state, desirable for topological quantum computations, recent experiments suggest a singlet state, ruling out the original p-wave scenario. The superconductivity as well as the properties of the multi-layered compounds of the ruthenate perovskites are strongly influenced by a van Hove singularity in proximity of the Fermi energy. Tiny structural distortions move the van Hove singularity across the Fermi energy with dramatic consequences for the physical properties. Here, we determine the electronic structure of the van Hove singularity in the surface layer of Sr2RuO4 by quasi-particle interference imaging. We trace its dispersion and demonstrate from a model calculation accounting for the full vacuum overlap of the wave functions that its detection is facilitated through the octahedral rotations in the surface layer.


2021 ◽  
Author(s):  
Omri Abarbanel ◽  
Julisa Rozon ◽  
Geoffrey Hutchison

Organic π-conjugated polymers with a triplet ground state have been the focus of recent research for their interesting and unique electronic properties, arising from the presence of the two unpaired electrons. These polymers are usually built from alternating electron-donating and electron-accepting monomer pairs which lower the HOMO-LUMO gap and yield a triplet state instead of the typical singlet ground state. In this paper we use density functional theory calculations to explore the design rules that govern the creation of a ground state triplet conjugated polymer, and find that a small HOMO-LUMO gap in the singlet state is the best predictor for the existence of a triplet ground state, compared to previous use of pro-quinoidal character. This work can accelerate the discovery of new stable triplet materials by reducing the computa- tional resources needed for electronic-state calculations and the number of potential candidates for synthesis.


2021 ◽  
Vol 21 (5) ◽  
pp. 1072
Author(s):  
Mokhammad Fajar Pradipta ◽  
Harno Dwi Pranowo ◽  
Viny Alfiyah ◽  
Aulia Sukma Hutama

Potential energy curves (PECs) and energy profiles of atomic O attack on coronene as a model for graphene/graphitic surface and interstellar reaction surface have been computed at the unrestricted B3LYP/cc-pVDZ level of theory to elaborate on atomic O attack mechanism and chemisorption on coronene. The PECs were generated by scanning the O atom distance to the closest carbon atom on "top" and "bridge" positions in the coronene, while fully relaxed geometries in the triplet state were investigated to gain the energy profile. We found that the most favorable geometry as the final product was the chemically bound O on the "bridge" site in the singlet state with an interaction energy of –29.2 kcal/mol. We recommended a plausible mechanism of atomic O attack and chemisorption reaction on coronene or generally graphitic surface starting from the non-interacting O atom and coronene systems into the chemically bound O atom on coronene.


2021 ◽  
Vol 7 (9) ◽  
pp. 92115-92132
Author(s):  
Claudineia Aparecida Sales De Oliveira Pinto ◽  
Maria Ines de Almeida Gonçalves ◽  
Tércio Elyan Azevedo Martins ◽  
Michele Georges Issa ◽  
Fernando Soares De Lima ◽  
...  

The combination of butyl methoxydibenzoylmethane (BMBM) and octyl methoxycinnamate (EHMC) is widely used in pharmaceutical formulations but may exhibit alteration in spectral absorption following exposure to UV radiation. The addition of natural substances in sunscreen formulations has been explored regarding photoprotective efficacy. The main objective of this research was to evaluate the potential of rutin as a photostabilizer substance of EHMC and BMBM. The samples were evaluated before and after exposure to UV radiation to in vitro photoprotection and molecular interactions by 1H NMR, DSC, TG and qualitative analysis of the suppression of singlet energy state. The addition of rutin in the formulations containing BMBM and EHMC promoted an increase in the preservation of in vitro SPF of 53.9% to 65.8 (0.1% rutin ) and 70.8 % (1.0% rutin ). The DSC and TG curves of rutin showed interaction between the flavonoid and filters. The trans/cis ratio for EHMC improved from 5.5 ± 0.1 to 12.6 ± 0.4 with rutin addition. The suppression of the singlet state indicated that one of the mechanisms involved in the photostabilization is suppression of singlet excited state. These results can contribute to the development of broad-spectrum sunscreens formulations with increased safety and efficacy.


Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5333
Author(s):  
Stefania Marzocco ◽  
Rajeev K. Singla ◽  
Anna Capasso

Lycopene is a pigment belonging to the group of carotenoids and it is among the most carefully studied antioxidants found especially in fruit and vegetables. As a carotenoid, lycopene exerts beneficial effects on human health by protecting lipids, proteins, and DNA from damage by oxidation. Lycopene is a powerful oxygen inactivator in the singlet state. This is suggestive of the fact that lycopene harbors comparatively stronger antioxidant properties over other carotenoids normally present in plasma. Lycopene is also reported to hinder cancer cell proliferation. The uncontrolled, rapid division of cells is a characteristic of the metabolism of cancer cells. Evidently, lycopene causes a delay in the progression of the cell cycle, which explains its antitumor activity. Furthermore, lycopene can block cell transformation by reducing the loss of contact inhibition of cancer cells. This paper collects recent studies of scientific evidence that show the multiple beneficial properties of lycopene, which acts with different molecular and cellular mechanisms.


Sign in / Sign up

Export Citation Format

Share Document