Neogene magmatic expansion and mountain building processes in the southern Central Andes, 36–37°S, Argentina

2012 ◽  
Vol 53 ◽  
pp. 81-94 ◽  
Author(s):  
Mauro G. Spagnuolo ◽  
Vanesa D. Litvak ◽  
Andres Folguera ◽  
Germán Bottesi ◽  
Victor A. Ramos
2020 ◽  
Author(s):  
Robin Lacassin ◽  
Magali Riesner ◽  
Martine Simoes ◽  
Tania Habel ◽  
Audrey Margirier ◽  
...  

<p>The Andes are the modern active example of a Cordilleran-type orogen, with mountain-building
 and crustal thickening within the upper plate of a subduction zone. Despite numerous studies of
 this emblematic mountain range, several primary traits of this orogeny remain unresolved or poorly documented. The timing of uplift and deformation of the Frontal Cordillera basement culmination of
 the Southern Central Andes is such an example, even though this structural unit appears as a first-order topographic and geological feature. Constraining this timing and in particular the onset of uplift is a key point in the ongoing debate about the initial vergence of the crustal-scale thrusts at the start of the Cenozoic Andean orogeny. To solve for this, new apatite and zircon (U-Th)/He ages from granitoids of the Frontal Cordillera at ~33.5°S are provided here. These data, interpreted as an age-elevation thermochronological profile, imply continuous exhumation initiating well before ~12–14 Ma, and at most by ~22 Ma when considering the youngest zircon grain from the lowermost sample (Riesner et al. 2019). The inverse modeling of the thermochronological data using QTQt software confirms these conclusions and point to a continuous cooling rate since onset of cooling. The minimum age of exhumation onset is then refined to ~20 Ma by combining these results with data on sedimentary provenance from the nearby basins. Such continuous exhumation since ~20 Ma needs to have been sustained by tectonic uplift on an underlying crustal-scale thrust ramp. Such early exhumation and associated uplift of the Frontal Cordillera question the classically proposed east-vergent models of the Andes at this latitude. Additionally, this study provides further support to recent views on Andean mountain-building proposing that the Andes-Altiplano orogenic system grew firstly over west-vergent basement structures before shifting to dominantly east-vergent thrusts. <br>Riesner M. et al. 2019, Scientific Reports, DOI: 10.1038/s41598-019-44320-1</p>


2016 ◽  
Author(s):  
Julie C. Fosdick ◽  
◽  
Barbara Carrapa ◽  
Barbara Carrapa ◽  
Ellen J. Reat ◽  
...  

2017 ◽  
Author(s):  
José Luis Antinao ◽  
◽  
Rachel Tiner ◽  
Rachel Tiner ◽  
Rachel Tiner ◽  
...  

2001 ◽  
Vol 171 (3-4) ◽  
pp. 213-237 ◽  
Author(s):  
Wolfgang Siebel ◽  
Wolfgang B.W. Schnurr ◽  
Knut Hahne ◽  
Bernhard Kraemer ◽  
Robert B. Trumbull ◽  
...  

2011 ◽  
Vol 7 (1) ◽  
pp. 41-46 ◽  
Author(s):  
R. Zech ◽  
J. Zech ◽  
Ch. Kull ◽  
P. W. Kubik ◽  
H. Veit

Abstract. The latitudinal position of the southern westerlies has been suggested to be a key parameter for the climate on Earth. According to the general notion, the southern westerlies were shifted equatorward during the global Last Glacial Maximum (LGM: ~24–18 ka), resulting in reduced deep ocean ventilation, accumulation of old dissolved carbon, and low atmospheric CO2 concentrations. In order to test this notion, we applied surface exposure dating on moraines in the southern Central Andes, where glacial mass balances are particularly sensitive to changes in precipitation, i.e. to the latitudinal position of the westerlies. Our results provide robust evidence that the maximum glaciation occurred already at ~39 ka, significantly predating the global LGM. This questions the role of the westerlies for atmospheric CO2, and it highlights our limited understanding of the forcings of atmospheric circulation.


Sign in / Sign up

Export Citation Format

Share Document