crustal thickening
Recently Published Documents


TOTAL DOCUMENTS

437
(FIVE YEARS 150)

H-INDEX

52
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Jens-Erik Lund Snee ◽  
Elizabeth L. Miller

ABSTRACT The paleogeographic evolution of the western U.S. Great Basin from the Late Cretaceous to the Cenozoic is critical to understanding how the North American Cordillera at this latitude transitioned from Mesozoic shortening to Cenozoic extension. According to a widely applied model, Cenozoic extension was driven by collapse of elevated crust supported by crustal thicknesses that were potentially double the present ~30–35 km. This model is difficult to reconcile with more recent estimates of moderate regional extension (≤50%) and the discovery that most high-angle, Basin and Range faults slipped rapidly ca. 17 Ma, tens of millions of years after crustal thickening occurred. Here, we integrated new and existing geochronology and geologic mapping in the Elko area of northeast Nevada, one of the few places in the Great Basin with substantial exposures of Paleogene strata. We improved the age control for strata that have been targeted for studies of regional paleoelevation and paleoclimate across this critical time span. In addition, a regional compilation of the ages of material within a network of middle Cenozoic paleodrainages that developed across the Great Basin shows that the age of basal paleovalley fill decreases southward roughly synchronous with voluminous ignimbrite flareup volcanism that swept south across the region ca. 45–20 Ma. Integrating these data sets with the regional record of faulting, sedimentation, erosion, and magmatism, we suggest that volcanism was accompanied by an elevation increase that disrupted drainage systems and shifted the continental divide east into central Nevada from its Late Cretaceous location along the Sierra Nevada arc. The north-south Eocene–Oligocene drainage divide defined by mapping of paleovalleys may thus have evolved as a dynamic feature that propagated southward with magmatism. Despite some local faulting, the northern Great Basin became a vast, elevated volcanic tableland that persisted until dissection by Basin and Range faulting that began ca. 21–17 Ma. Based on this more detailed geologic framework, it is unlikely that Basin and Range extension was driven by Cretaceous crustal overthickening; rather, preexisting crustal structure was just one of several factors that that led to Basin and Range faulting after ca. 17 Ma—in addition to thermal weakening of the crust associated with Cenozoic magmatism, thermally supported elevation, and changing boundary conditions. Because these causal factors evolved long after crustal thickening ended, during final removal and fragmentation of the shallowly subducting Farallon slab, they are compatible with normal-thickness (~45–50 km) crust beneath the Great Basin prior to extension and do not require development of a strongly elevated, Altiplano-like region during Mesozoic shortening.


Author(s):  
Yujian Wang ◽  
Dicheng Zhu ◽  
Chengfa Lin ◽  
Fangyang Hu ◽  
Jingao Liu

Accretionary orogens function as major sites for the generation of continental crust, but the growth model of continental crust remains poorly constrained. The Central Asian Orogenic Belt, as one of the most important Phanerozoic accretionary orogens on Earth, has been the focus of debates regarding the proportion of juvenile crust present. Using published geochemical and zircon Hf-O isotopic data sets for three belts in the Eastern Tianshan terrane of the southern Central Asian Orogenic Belt, we first explore the variations in crustal thickness and isotopic composition in response to tectono-magmatic activity over time. Steady progression to radiogenic zircon Hf isotopic signatures associated with syn-collisional crustal thickening indicates enhanced input of mantle-derived material, which greatly contributes to the growth of the continental crust. Using the surface areas and relative increases in crustal thickness as the proxies for magma volumes, in conjunction with the calculated mantle fraction of the mixing flux, we then are able to determine that a volume of ∼14−22% of juvenile crust formed in the southern Central Asian Orogenic Belt during the Phanerozoic. This study highlights the validity of using crustal thickness and zircon isotopic signatures of magmatic rocks to quantify the volume of juvenile crust in complex accretionary orogens. With reference to the crustal growth pattern in other accretionary orogens and the Nd-Hf isotopic record at the global scale, our work reconciles the rapid crustal growth in the accretionary orogens with its episodic generation pattern in the formation of global continental crust.


Geology ◽  
2021 ◽  
Author(s):  
Adam Brudner ◽  
Hehe Jiang ◽  
Xu Chu ◽  
Ming Tang

The Grenville Province on the eastern margin of Laurentia is a remnant of a Mesoproterozoic orogenic plateau that comprised the core of the ancient supercontinent Rodinia. As a protracted Himalayan-style orogen, its orogenic history is vital to understanding Mesoproterozoic tectonics and paleoenvironmental evolution. In this study, we compared two geochemical proxies for crustal thickness: whole-rock [La/Yb]N ratios of intermediate-to-felsic rocks and europium anomalies (Eu/Eu*) in detrital zircons. We compiled whole-rock geochemical data from 124 plutons in the Laurentian Grenville Province and collected trace-element and geochronological data from detrital zircons from the Ottawa and St. Lawrence River (Canada) watersheds. Both proxies showed several episodes of crustal thickening and thinning during Grenvillian orogenesis. The thickest crust developed in the Ottawan phase (~60 km at ca. 1080 Ma and ca. 1045 Ma), when the collision culminated, but it was still up to 20 km thinner than modern Tibet. We speculate that a hot crust and several episodes of crustal thinning prevented the Grenville hinterland from forming a high Tibet-like plateau, possibly due to enhanced asthenosphere-lithosphere interactions in response to a warm mantle beneath a long-lived supercontinent, Nuna-Rodinia.


2021 ◽  
Vol 367 ◽  
pp. 106446
Author(s):  
Zhen-Xin Li ◽  
Shao-Bing Zhang ◽  
Yong-Fei Zheng ◽  
John M. Hanchar ◽  
Peng Gao ◽  
...  

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
John Parnell ◽  
Connor Brolly

AbstractThe geological record following the c. 2.3 billion years old Great Oxidation Event includes evidence for anomalously high burial of organic carbon and the emergence of widespread mountain building. Both carbon burial and orogeny occurred globally over the period 2.1 to 1.8 billion years ago. Prolific cyanobacteria were preserved as peak black shale sedimentation and abundant graphite. In numerous orogens, the exceptionally carbonaceous sediments were strongly deformed by thrusting, folding, and shearing. Here an assessment of the timing of Palaeoproterozoic carbon burial and peak deformation/metamorphism in 20 orogens shows that orogeny consistently occurred less than 200 million years after sedimentation, in a time frame comparable to that of orogens through the Phanerozoic. This implies that the high carbon burial played a critical role in reducing frictional strength and lubricating compressive deformation, which allowed crustal thickening to build Palaeoproterozoic mountain belts. Further, this episode left a legacy of weakening and deformation in 2 billion year-old crust which has supported subsequent orogenies up to the building of the Himalayas today. The link between Palaeoproterozoic biomass and long-term deformation of the Earth’s crust demonstrates the integral relationship between biosphere and lithosphere.


2021 ◽  
Author(s):  
◽  
Dougal B Townsend

<p>Six new palaeomagnetic localities in NE Marlborough, sampled from Late Cretaceous - Early Tertiary Amuri Formation and Middle Miocene Waima Formation, all yield clockwise declination anomalies of 100 - 150 degrees. Similarity in the magnitude of all new declination anomalies and integration of these results with previous data implies that clockwise vertical-axis rotation of this magnitude affected the entire palaeomagnetically sampled part of NE Marlborough (an area of ~700sq. km) after ~18 Ma. Previous palaeomagnetic sampling constrains this rotation to have occurred before ~7 Ma. The regional nature of this rotation implies that crustal-scale vertical-axis rotations were a fundamental process in the Miocene evolution of the Pacific - Australia plate boundary in NE South Island. The Flags Creek Fault System (FCFS) is a fold-and-thrust belt that formed in marine conditions above a subduction complex that developed as the Pacific - Australia plate boundary propagated through Marlborough in the Early Miocene. Thin-skinned fault offset accommodated at least 20 km of horizontal shortening across a leading-edge imbricate fan. Mesoscopic structures in the deformed belt indicate thrust vergence to the southeast. The palaeomagnetically-determined regional clockwise vertical axis rotation of ~100 degrees must be undone in order to evaluate this direction in the contemporary geographic framework of the thrust belt. Therefore the original transport direction of the thrust sheets in the FCFS was to the NE, in accordance with NE-SW plate motion vector between the Pacific and Australian plates during the Early Miocene. The two new palaeomagnetic localities that are within ~3 km of the active dextral strike-slip Kekerengu Fault have the highest clockwise declination anomalies (up to 150 degrees). Detailed structural mapping suggests that the eastern ends of the FCFS are similarly clockwise-rotated, by an extra 45 degrees relative to the regional average, to become south-vergent in proximity to the Kekerengu Fault. This structural evidence implies the presence of a zone of Plio-Pleistocene dextral shear and vertical-axis rotation within 2-3 km of the Kekerengu Fault. Local clockwise vertical-axis rotations of up to 50 degrees are inferred to have accrued in this zone, and to have been superimposed on the older, regional. ~100 degrees Miocene clockwise vertical-axis rotation. The Late Quaternary stratigraphy of fluvial terraces in NE Marlborough has been revised by the measurement of five new optically stimulated luminescence (OSL) dates on loess. This new stratigraphy suggests that the latest aggradation surface in the Awatere Valley (the Starborough-1 terrace) is, at least locally, ~9 ka old, several thousand years younger than the previous 16 ka thermoluminescence age for the same site. This new surface abandonment age implies that terrace-building events in NE Marlborough lasted well after the last glacial maximum (~17 ka). The timing of terrace aggradation in this peri-glacial region is compared with oxygen isotope data. Downstream transport of glacially derived sediment at the time of maximum deglaciation/warming is concluded to be the primary influence on the aggradation of major fill terraces in coastal NE Marlborough. This interpretation is generally applicable to peri-glacial central New Zealand. Patterns of contemporary uplift and directions of landscape tilting have been analysed by assessing the rates of stream incision and by the evolution of drainage networks over a wide tract of NE Marlborough that includes the termination of the dextral strike-slip Clarence Fault. Relative elevations of differentially aged terraces suggests an increase in rates of incision over the last ~10 ka. Uplift is highest in the area immediately surrounding the fault tip and is generally high where Torlesse basement rocks are exposed. Independently derived directions of Late Quaternary tilting of the landscape display a similar pattern of relative uplift in a broad dome to the north and west of the fault tip. This pattern of uplift suggests dissipation of strike-slip motion at the Clarence Fault tip into a dome-shaped fold accommodating: 1) crustal thickening (uplift) and 2) up to 44 degrees of vertical-axis rotation of a ~40 km2 crustal block, relative to more inland domains, into which the fault terminates. The distribution of incision rates is compared with the pattern of crustal thickening predicted by elastic models of strike-slip fault tips. The observed pattern and spatial extent of uplift generally conforms with the distribution of thickening predicted by the models, although the rate of incision/uplift over the last ~120 ka has been variable. These differences may be due to variability in the strike-slip rate of the Clarence Fault, superimposition of the regional uplift rate or to interaction with nearby fault structures not accounted for in the models.</p>


2021 ◽  
Author(s):  
◽  
Dougal B Townsend

<p>Six new palaeomagnetic localities in NE Marlborough, sampled from Late Cretaceous - Early Tertiary Amuri Formation and Middle Miocene Waima Formation, all yield clockwise declination anomalies of 100 - 150 degrees. Similarity in the magnitude of all new declination anomalies and integration of these results with previous data implies that clockwise vertical-axis rotation of this magnitude affected the entire palaeomagnetically sampled part of NE Marlborough (an area of ~700sq. km) after ~18 Ma. Previous palaeomagnetic sampling constrains this rotation to have occurred before ~7 Ma. The regional nature of this rotation implies that crustal-scale vertical-axis rotations were a fundamental process in the Miocene evolution of the Pacific - Australia plate boundary in NE South Island. The Flags Creek Fault System (FCFS) is a fold-and-thrust belt that formed in marine conditions above a subduction complex that developed as the Pacific - Australia plate boundary propagated through Marlborough in the Early Miocene. Thin-skinned fault offset accommodated at least 20 km of horizontal shortening across a leading-edge imbricate fan. Mesoscopic structures in the deformed belt indicate thrust vergence to the southeast. The palaeomagnetically-determined regional clockwise vertical axis rotation of ~100 degrees must be undone in order to evaluate this direction in the contemporary geographic framework of the thrust belt. Therefore the original transport direction of the thrust sheets in the FCFS was to the NE, in accordance with NE-SW plate motion vector between the Pacific and Australian plates during the Early Miocene. The two new palaeomagnetic localities that are within ~3 km of the active dextral strike-slip Kekerengu Fault have the highest clockwise declination anomalies (up to 150 degrees). Detailed structural mapping suggests that the eastern ends of the FCFS are similarly clockwise-rotated, by an extra 45 degrees relative to the regional average, to become south-vergent in proximity to the Kekerengu Fault. This structural evidence implies the presence of a zone of Plio-Pleistocene dextral shear and vertical-axis rotation within 2-3 km of the Kekerengu Fault. Local clockwise vertical-axis rotations of up to 50 degrees are inferred to have accrued in this zone, and to have been superimposed on the older, regional. ~100 degrees Miocene clockwise vertical-axis rotation. The Late Quaternary stratigraphy of fluvial terraces in NE Marlborough has been revised by the measurement of five new optically stimulated luminescence (OSL) dates on loess. This new stratigraphy suggests that the latest aggradation surface in the Awatere Valley (the Starborough-1 terrace) is, at least locally, ~9 ka old, several thousand years younger than the previous 16 ka thermoluminescence age for the same site. This new surface abandonment age implies that terrace-building events in NE Marlborough lasted well after the last glacial maximum (~17 ka). The timing of terrace aggradation in this peri-glacial region is compared with oxygen isotope data. Downstream transport of glacially derived sediment at the time of maximum deglaciation/warming is concluded to be the primary influence on the aggradation of major fill terraces in coastal NE Marlborough. This interpretation is generally applicable to peri-glacial central New Zealand. Patterns of contemporary uplift and directions of landscape tilting have been analysed by assessing the rates of stream incision and by the evolution of drainage networks over a wide tract of NE Marlborough that includes the termination of the dextral strike-slip Clarence Fault. Relative elevations of differentially aged terraces suggests an increase in rates of incision over the last ~10 ka. Uplift is highest in the area immediately surrounding the fault tip and is generally high where Torlesse basement rocks are exposed. Independently derived directions of Late Quaternary tilting of the landscape display a similar pattern of relative uplift in a broad dome to the north and west of the fault tip. This pattern of uplift suggests dissipation of strike-slip motion at the Clarence Fault tip into a dome-shaped fold accommodating: 1) crustal thickening (uplift) and 2) up to 44 degrees of vertical-axis rotation of a ~40 km2 crustal block, relative to more inland domains, into which the fault terminates. The distribution of incision rates is compared with the pattern of crustal thickening predicted by elastic models of strike-slip fault tips. The observed pattern and spatial extent of uplift generally conforms with the distribution of thickening predicted by the models, although the rate of incision/uplift over the last ~120 ka has been variable. These differences may be due to variability in the strike-slip rate of the Clarence Fault, superimposition of the regional uplift rate or to interaction with nearby fault structures not accounted for in the models.</p>


Geosphere ◽  
2021 ◽  
Author(s):  
Andrew V. Zuza ◽  
Christopher D. Henry ◽  
Seth Dee ◽  
Charles H. Thorman ◽  
Matthew T. Heizler

The Ruby Mountains–East Humboldt Range–Wood Hills–Pequop Mountains (REWP) metamorphic core complex, northeast Nevada, exposes a record of Mesozoic contraction and Cenozoic extension in the hinterland of the North American Cordillera. The timing, magnitude, and style of crustal thickening and succeeding crustal thinning have long been debated. The Pequop Mountains, comprising Neoproterozoic through Triassic strata, are the least deformed part of this composite metamorphic core complex, compared to the migmatitic and mylonitized ranges to the west, and provide the clearest field relationships for the Mesozoic–Cenozoic tectonic evolution. New field, structural, geochronologic, and thermochronological observations based on 1:24,000-scale geologic mapping of the northern Pequop Mountains provide insights into the multi-stage tectonic history of the REWP. Polyphase cooling and reheating of the middle-upper crust was tracked over the range of &lt;100 °C to 450 °C via novel 40Ar/39Ar multi-diffusion domain modeling of muscovite and K-feldspar and apatite fission-track dating. Important new observations and interpretations include: (1) crosscutting field relationships show that most of the contractional deformation in this region occurred just prior to, or during, the Middle-Late Jurassic Elko orogeny (ca. 170–157 Ma), with negligible Cretaceous shortening; (2) temperature-depth data rule out deep burial of Paleozoic stratigraphy, thus refuting models that incorporate large cryptic overthrust sheets; (3) Jurassic, Cretaceous, and Eocene intrusions and associated thermal pulses metamorphosed the lower Paleozoic–Proterozoic rocks, and various thermochronometers record conductive cooling near original stratigraphic depths; (4) east-draining paleovalleys with ~1–1.5 km relief incised the region before ca. 41 Ma and were filled by 41–39.5 Ma volcanic rocks; and (5) low-angle normal faulting initiated after the Eocene, possibly as early as the late Oligocene, although basin-generating extension from high-angle normal faulting began in the middle Miocene. Observed Jurassic shortening is coeval with structures in the Luning-Fencemaker thrust belt to the west, and other strain documented across central-east Nevada and Utah, suggesting ~100 km Middle-Late Jurassic shortening across the Sierra Nevada retroarc. This phase of deformation correlates with terrane accretion in the Sierran forearc, increased North American–Farallon convergence rates, and enhanced Jurassic Sierran arc magmatism. Although spatially variable, the Cordilleran hinterland and the high plateau that developed across it (i.e., the hypothesized Nevadaplano) involved a dynamic pulsed evolution with significant phases of both Middle-Late Jurassic and Late Cretaceous contractional deformation. Collapse long postdated all of this contraction. This complex geologic history set the stage for the Carlin-type gold deposit at Long Canyon, located along the eastern flank of the Pequop Mountains, and may provide important clues for future exploration.


Sign in / Sign up

Export Citation Format

Share Document