Smart contract service migration mechanism based on container in edge computing

Author(s):  
Luxiu Yin ◽  
Pengfei Li ◽  
Juan Luo
2020 ◽  
Vol 2 (1) ◽  
pp. 92
Author(s):  
Rahim Rahmani ◽  
Ramin Firouzi ◽  
Sachiko Lim ◽  
Mahbub Alam

The major challenges of operating data-intensive of Distributed Ledger Technology (DLT) are (1) to reach consensus on the main chain as a set of validators cast public votes to decide on which blocks to finalize and (2) scalability on how to increase the number of chains which will be running in parallel. In this paper, we introduce a new proximal algorithm that scales DLT in a large-scale Internet of Things (IoT) devices network. We discuss how the algorithm benefits the integrating DLT in IoT by using edge computing technology, taking the scalability and heterogeneous capability of IoT devices into consideration. IoT devices are clustered dynamically into groups based on proximity context information. A cluster head is used to bridge the IoT devices with the DLT network where a smart contract is deployed. In this way, the security of the IoT is improved and the scalability and latency are solved. We elaborate on our mechanism and discuss issues that should be considered and implemented when using the proposed algorithm, we even show how it behaves with varying parameters like latency or when clustering.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Run Yang ◽  
Hui He ◽  
Weizhe Zhang

Mobile edge computing (MEC) pushes computing resources to the edge of the network and distributes them at the edge of the mobile network. Offloading computing tasks to the edge instead of the cloud can reduce computing latency and backhaul load simultaneously. However, new challenges incurred by user mobility and limited coverage of MEC server service arise. Services should be dynamically migrated between multiple MEC servers to maintain service performance due to user movement. Tackling this problem is nontrivial because it is arduous to predict user movement, and service migration will generate service interruptions and redundant network traffic. Service interruption time must be minimized, and redundant network traffic should be reduced to ensure service quality. In this paper, the container live migration technology based on prediction is studied, and an online prediction method based on map data that does not rely on prior knowledge such as user trajectories is proposed to address this challenge in terms of mobility prediction accuracy. A multitier framework and scheduling algorithm are designed to select MEC servers according to moving speeds of users and latency requirements of offloading tasks to reduce redundant network traffic. Based on the map of Beijing, extensive experiments are conducted using simulation platforms and real-world data trace. Experimental results show that our online prediction methods perform better than the common strategy. Our system reduces network traffic by 65% while meeting task delay requirements. Moreover, it can flexibly respond to changes in the user’s moving speed and environment to ensure the stability of offload service.


Sign in / Sign up

Export Citation Format

Share Document