The reaction pathway and rate-limiting step of dehydrogenation of the LiHN2+LiH mixture

2008 ◽  
Vol 177 (2) ◽  
pp. 500-505 ◽  
Author(s):  
Leon L. Shaw ◽  
William Osborn ◽  
Tippawan Markmaitree ◽  
Xuefei Wan
1988 ◽  
Vol 53 (12) ◽  
pp. 3154-3163 ◽  
Author(s):  
Jiří Klicnar ◽  
Jaromír Mindl ◽  
Ivana Obořilová ◽  
Jaroslav Petříček ◽  
Vojeslav Štěrba

The reaction of 1,2-diaminobenzene with 2,3-butanedione is subject to general acid catalysis in acetate and phosphate buffers (pH 4-7). The rate-limiting step of formation of 2,3-dimethylquinoxaline consists in the protonation of dipolar tetrahedral intermediate. In the case of the reaction of 1,2-diaminobenzene with ethyl 2-oxopropanoate, the dehydration of carbinolamine gradually becomes rate-limiting with increasing pH in acetate buffers, whereas in phosphate buffers a new reaction pathway makes itself felt, viz. the formation of amide catalyzed by the basic buffer component and by hydroxide ion.


1988 ◽  
Vol 53 (3) ◽  
pp. 601-618 ◽  
Author(s):  
Jaromír Kaválek ◽  
Vladimír Macháček ◽  
Makky M. M. Hassanien ◽  
Vojeslav Štěrba

The reaction of N-methyl-N-(2,4,6-trinitrophenyl)glycinamide (Ic with methoxide in methanol produces the spiro adduct IIc(A). In methanolic acetate buffers, the equilibrium is rapidly established between the spiro adduct IIc(A) and the dipolar ion of 2-methylamino-N-(2,4,6-trinitrophenyl)acetamide (IIIc(Z)). The equilibrium constant of the reaction IIIc(Z) ⇆ IIc(A) + H+ is by eight orders of magnitude greater than that of the analogous cyclization of 2-methylamino-N-methyl-N-(2,4,6-trinitrophenyl)acetamide to the spiro adduct. In chloracetate buffers, the dipolar ion is protonated to give 2-methylammonium-N-(2,4,6-trinitrohenyl)acetamide IIIc(K). The kinetics of the reversible reaction IIIc(Z) ⇆ IIc(A) + H+ has been studied in acetate buffers, aliphatic amine – ammonium salt buffers, and methoxide solutions. In all cases, the rate-limiting step was the proton transfer with half-lives in milliseconds. In more basic methanolic buffers (pH > 10) the rate-limiting step consists in the formation of spiro adduct from the zwiterion IIIc(Z) resulting from the protonation of the anion IIIc(A). n acetate buffers, the second reaction pathway via the cation IIIc(K) is predominant.


1999 ◽  
Vol 23 (1) ◽  
pp. 2-3
Author(s):  
Subbiah Meenakshisundaram ◽  
M. Amutha

The kinetic behaviours of oxidation of dialkyl, alkyl aryl and diphenyl sulfides are quite different with pyridinium dichromate in acetonitrile medium; studies indicate the involvement of a sulfur cation free radical intermediate in diphenyl sulfide oxidation; electron releasing and withdrawing groups retard the reactivity of aryl methyl sulfides; the observed non-linear concave downwards type Hammett plot is well explained by assuming shifts in the rate-limiting step within the same overall reaction pathway.


1978 ◽  
Vol 39 (02) ◽  
pp. 496-503 ◽  
Author(s):  
P A D’Amore ◽  
H B Hechtman ◽  
D Shepro

SummaryOrnithine decarboxylase (ODC) activity, the rate-limiting step in the synthesis of polyamines, can be demonstrated in cultured, bovine, aortic endothelial cells (EC). Serum, serotonin and thrombin produce a rise in ODC activity. The serotonin-induced ODC activity is significantly blocked by imipramine (10-5 M) or Lilly 11 0140 (10-6M). Preincubation of EC with these blockers together almost completely depresses the 5-HT-stimulated ODC activity. These observations suggest a manner by which platelets may maintain EC structural and metabolic soundness.


Diabetes ◽  
1993 ◽  
Vol 42 (2) ◽  
pp. 296-306 ◽  
Author(s):  
D. C. Bradley ◽  
R. A. Poulin ◽  
R. N. Bergman

Sign in / Sign up

Export Citation Format

Share Document