hydroxide ion
Recently Published Documents


TOTAL DOCUMENTS

823
(FIVE YEARS 57)

H-INDEX

50
(FIVE YEARS 7)

2021 ◽  
Vol 2083 (3) ◽  
pp. 032089
Author(s):  
Yueyang Fu

Abstract According to the Bronsted-Lowry theory, an acid is a proton donor, and a base is a proton acceptor. An acid-base reaction involves the proton transfer between chemicals, where a base containing hydroxide ion (OH-) accepts a proton (H+) from an acidic solution to form water (Khan,2016). In the above equation, HCl as an acid donates one H+ ion, and NaOH as a base accepts the proton to form one water molecule (H2O). So, a proton from the acid is transferred to the anion of the base. Then, the metal cation (Na+) and the conjugate base anion (Cl-) form the salt NaCl.


Author(s):  
Shilin Wang ◽  
Shuaikang Fan ◽  
Zhou Fang ◽  
Yue Hu ◽  
Mengyang Dong ◽  
...  

2021 ◽  
Vol 631 ◽  
pp. 119335
Author(s):  
Xixing Zhou ◽  
Lexuan Wu ◽  
Guangxu Zhang ◽  
Ruyu Li ◽  
Xu Hu ◽  
...  

Joule ◽  
2021 ◽  
Author(s):  
Christopher Choi ◽  
Kevin Robert ◽  
Grace Whang ◽  
Pascal Roussel ◽  
Christophe Lethien ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Yanyou Wu

AbstractIf the photosynthetic organisms assimilated only CO2 in the Archean atmosphere, hydroxide ion in the Archean seawater would not increase. If plants would not consume bicarbonate as a direct substrate during photosynthesis, it is difficult to explain the evolution of Earth's environment. To date, it is generally accepted that photosynthetic O2 evolution of plants come from water photolysis. However, it should be debated by evaluating the effect of bicarbonate in photosynthetic O2 evolution, analyzing the role of carbonic anhydrase (CA) in photosynthetic O2 evolution, and the relationship between thylakoid CA and photosynthetic O2 evolution. In the paper, I propose that bicarbonate is directly used as substrate to participate in photosynthetic O2 evolution. The rationality of bicarbonate photolysis of plants is discussed from the thermodynamics and evolution of Earth's environment. The isotopic evidence that bicarbonate is not the direct substrate of photosynthetic O2 release is reexamined, and the new explanation of bicarbonate photolysis in photosynthetic O2 evolution is proposed.


2021 ◽  
Author(s):  
Yuke Li ◽  
Zhi-Feng Liu

Hydroxide ion is a common electrolyte when electrode reactions take place in alkaline media. In the case of oxygen reduction reaction on Pt(111), we demonstrate by ab initio molecular dynamics calculations, that the desorption of hydroxyl (OH*) from the electrode surface to form a solvated OH<sup>−</sup> is a cross sphere process, with the reactant OH* in the inner sphere and the product OH<sup>−</sup> directly generated in the aqueous outer sphere. Such a mechanism is distinct from the typical inner sphere and outer sphere reactions. It is dictated by the strong hydrogen bonding interactions between a hydroxide ion and water molecules and facilitated by proton transfer through solvation layers. It should play a significant role whenever OH* desorption, or its reverse, OH<sup>−</sup> adsorption, is involved in an electrochemical reaction


2021 ◽  
Author(s):  
Yuke Li ◽  
Zhi-Feng Liu

Hydroxide ion is a common electrolyte when electrode reactions take place in alkaline media. In the case of oxygen reduction reaction on Pt(111), we demonstrate by ab initio molecular dynamics calculations, that the desorption of hydroxyl (OH*) from the electrode surface to form a solvated OH<sup>−</sup> is a cross sphere process, with the reactant OH* in the inner sphere and the product OH<sup>−</sup> directly generated in the aqueous outer sphere. Such a mechanism is distinct from the typical inner sphere and outer sphere reactions. It is dictated by the strong hydrogen bonding interactions between a hydroxide ion and water molecules and facilitated by proton transfer through solvation layers. It should play a significant role whenever OH* desorption, or its reverse, OH<sup>−</sup> adsorption, is involved in an electrochemical reaction


Sign in / Sign up

Export Citation Format

Share Document