radical intermediate
Recently Published Documents


TOTAL DOCUMENTS

294
(FIVE YEARS 43)

H-INDEX

38
(FIVE YEARS 4)

2021 ◽  
Vol 923 (2) ◽  
pp. 159
Author(s):  
Germán Molpeceres ◽  
Juan García de la Concepción ◽  
Izaskun Jiménez-Serra

Abstract With the presence of evermore complex S-bearing molecules being detected lately, studies of their chemical formation routes need to keep up the pace to rationalize observations, suggest new candidates for detection, and provide input for chemical evolution models. In this paper, we theoretically characterize the hydrogenation channels of OCS on top of amorphous solid water (ASW) as an interstellar dust grain analog in molecular clouds. Our results show that the significant reaction outcome is trans-HC(O)SH, a recently detected prebiotic molecule toward G+0.693. The reaction is diastereoselective, explaining the apparent absence of the cis isomer in astronomical observations. We found that the reaction proceeds through a highly localized radical intermediate (cis-OCSH), which could be essential in the formation of other sulfur-bearing complex organic molecules due to its slow isomerization dynamics on top of ASW.


2021 ◽  
Author(s):  
Jiaqi Liu ◽  
Brian Dolinar ◽  
Jessica Hoover

This article describes the synthesis and reactivity studies of three cobalt complexes bearing aminophenol-derived ligands without nitrogen substitution: CoII(tBu2APH)2(tBu2AP)2 (1), Co2III(tBu2APH)2(tBu2AP)2(μ-tBu2BAP)2 (2), and CoIII(tBu2AP)3 (3) (tBu2APH = 2-amino-4,6-di-tert-butylphenol, tBu2AP = 2-amino-4,6-di-tert-butylphenolate, μ-tBu2BAP = bridging 2-amido-4,6-di-tert-butylphenolate). Stoichiometric reactivity studies of these well-defined complexes demonstrate the catalytic com-petency of both CoII and CoIII complexes in the aerobic oxidative cyclization of tBu2APH with tert-butyl isonitrile. Reactions with O2 reveal the aerobic oxidation of CoII complex 1 to generate the CoIII species 2 and 3. UV-visible time-course studies and EPR spectroscopy indicate that this oxidation proceeds through a ligand-based radical intermediate. These studies repre-sent the first example of well-defined cobalt-aminophenol complexes that participate in catalytic aerobic oxidation reactions and highlight a key role for a ligand radical in the oxidation sequence.


2021 ◽  
Author(s):  
John Lopp ◽  
Valerie Schmidt

Radical-mediated thiol desulfurization processes using tricoordinate phosphorous reagents are used in a range of applications from small molecule synthesis to peptide modification. A combined experimental and computational examination of the mechanism and kinetics of the radical desulfurization of alkyl thiyl radicals using trivalent phosphorus reagents was performed. Primary alkyl thiols undergo desulfurization between 10^6 to 10^9 M-1s-1 depending on the phosphorus component with either an H-atom transfer step or β-fragmentation of the thiophosphoranyl intermediate may be rate-controlling. While the desulfurization of primary aliphatic thiols showed a marked dependence on the identity of phosphorous reagent used with either a rate-controlling H-atom transfer or -fragmentation, thiols yielding stabilized C-centered radicals showed much less sensitivity. Support for a stepwise S-atom transfer process progressing via a distorted trigonal bipyramidal thiophosphoranyl radical intermediate was obtained from DFT calculated energetics and hyperfine splitting values.


2021 ◽  
Author(s):  
Alex Chinn ◽  
Kassandra Sedillo ◽  
Abigail Doyle

New strategies to access radicals from common feedstock chemicals hold the potential to broadly impact synthetic chemistry. We report a dual phosphine and photoredox catalytic system that enables direct formation of sulfonamidyl radicals from primary sulfonamides. The method is proposed to proceed via -scission of the sulfonamidyl radical from a phosphoranyl radical intermediate, generated upon sulfonamide nucleophilic addition to a phosphine radical cation. As compared to the recently well-explored β-scission chemistry of phosphoranyl radicals, this strategy is applicable to activation of N-based nucleophiles and is catalytic in phosphine. We highlight application of this activation strategy to an intermolecular anti-Markovnikov hydroamination of unactivated olefins with primary sulfonamides. A range of structurally diverse secondary sulfonamides can be prepared in good to excellent yields under mild conditions.


Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1118
Author(s):  
Tingting Lu ◽  
Mingqiang Huang ◽  
Xin Lin ◽  
Wei Zhang ◽  
Weixiong Zhao ◽  
...  

The OH-initiated reaction of ethylbenzene results in major OH addition, and the formed ethylbenzene-OH adducts subsequently react with O2 and NO2, which determine the components of the oxidation products. In this study, nine possible reaction paths of the most stable ethylbenzene-OH adduct, EB-Ortho (2-ethyl-hydroxycyclohexadienyl radical intermediate), with O2 and NO2 were studied using density functional theory and conventional transition state theory. The calculated results showed that ethyl-phenol formed via hydrogen abstraction was the major product of the EB-Ortho reaction with O2 under atmospheric conditions. Peroxy radicals generated from O2 added to EB-Ortho could subsequently react with NO and O2 to produce 5-ethyl-6-oxo-2,4-hexadienal, furan, and ethyl-glyoxal, respectively. However, nitro-ethylbenzene formed from NO2 addition to EB-Ortho was the predominant product of the EB-Ortho reaction with NO2 at room temperature. The total calculated rate constant of the EB-Ortho reaction with O2 and NO2 was 9.57 × 10−16 and 1.78 × 10−11 cm3 molecule−1 s−1, respectively, approximately equivalent to the experimental rate constants of toluene-OH adduct reactions with O2 and NO2. This study might provide a useful theoretical basis for interpreting the oxygen-containing and nitrogen-containing organics in anthropogenic secondary organic aerosol particles.


2021 ◽  
Vol 64 (10) ◽  
pp. 1630-1659
Author(s):  
Han-Jun Ai ◽  
Xingxing Ma ◽  
Qiuling Song ◽  
Xiao-Feng Wu

AbstractThe unique properties of fluorine-containing organic compounds make fluorine substitution attractive for the development of pharmaceuticals and various specialty materials, which have inspired the evolution of diverse C-F bond activation techniques. Although many advances have been made in functionalizations of activated C-F bonds utilizing transition metal complexes, there are fewer approaches available for nonactivated C-F bonds due to the difficulty in oxidative addition of transition metals to the inert C-F bonds. In this regard, using Lewis acid to abstract the fluoride and light/radical initiator to generate the radical intermediate have emerged as powerful tools for activating those inert C-F bonds. Meanwhile, these transition-metal-free processes are greener, economical, and for the pharmaceutical industry, without heavy metal residues. This review provides an overview of recent C-F bond activations and functionalizations under transition-metal-free conditions. The key mechanisms involved are demonstrated and discussed in detail. Finally, a brief discussion on the existing limitations of this field and our perspective are presented.


Author(s):  
Haoran Pang ◽  
Lindsey M. Walker ◽  
Alexey Silakov ◽  
Pan Zhang ◽  
Weitao Yang ◽  
...  

2021 ◽  
Author(s):  
Roel Epping ◽  
Mees Hoeksma ◽  
Eduard Bobylev ◽  
Simon Mathew ◽  
Bas de Bruin

Abstract Square-planar cobalt(II)-systems have emerged as powerful carbene transfer catalysts for the synthesis of numerous (hetero)cyclic compounds via cobalt(III)-carbene radical intermediates. Spectroscopic detection and characterization of reactive carbene radical intermediates is limited to a few scattered experiments, centering around mono-substituted carbenes. Here, we reveal the unique formation of disubstituted cobalt(III)-carbene radicals derived from a cobalt(II)-porphyrin complex and acceptor–acceptor λ3-iodaneylidenes (iodonium ylides) as carbene precursors and their catalytic application. Particularly noteworthy is the fact that iodonium ylides generate novel bis-carbenoid species via reversible ligand modification of the paramagnetic [Co(TPP)]-catalyst. Two interconnected catalytic cycles are involved in the overall mechanism, with a mono-carbene radical and an unprecedented N-enolate-carbene radical intermediate at the heart of each respective cycle. Notably, N-enolate formation is not a deactivation pathway, and both the N-enolate and carbene radical moieties can be transferred to styrene. The findings are supported by extensive experimental and computational studies.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1111
Author(s):  
Christopher M. Massa ◽  
Ziping Liu ◽  
Sheryse Taylor ◽  
Ashley P. Pettit ◽  
Marena N. Stakheyeva ◽  
...  

The modification of protein cysteine residues underlies some of the diverse biological functions of nitric oxide (NO) in physiology and disease. The formation of stable nitrosothiols occurs under biologically relevant conditions and time scales. However, the factors that determine the selective nature of this modification remain poorly understood, making it difficult to predict thiol targets and thus construct informatics networks. In this review, the biological chemistry of NO will be considered within the context of nitrosothiol formation and degradation whilst considering how specificity is achieved in this important post-translational modification. Since nitrosothiol formation requires a formal one-electron oxidation, a classification of reaction mechanisms is proposed regarding which species undergoes electron abstraction: NO, thiol or S-NO radical intermediate. Relevant kinetic, thermodynamic and mechanistic considerations will be examined and the impact of sources of NO and the chemical nature of potential reaction targets is also discussed.


Sign in / Sign up

Export Citation Format

Share Document