High-efficiency dye-sensitized solar cells based on ultra-long single crystalline titanium dioxide nanowires

2014 ◽  
Vol 266 ◽  
pp. 440-447 ◽  
Author(s):  
Lanfang Que ◽  
Zhang Lan ◽  
Wanxia Wu ◽  
Jihuai Wu ◽  
Jianming Lin ◽  
...  
2014 ◽  
Vol 16 (16) ◽  
pp. 7448-7454 ◽  
Author(s):  
P. S. Archana ◽  
Arunava Gupta ◽  
Mashitah M. Yusoff ◽  
Rajan Jose

Tungsten doping in TiO2 nanowires led to increased photocurrent density resulting from increased lifetime and dye-loading compared to niobium doping.


RSC Advances ◽  
2019 ◽  
Vol 9 (69) ◽  
pp. 40292-40300
Author(s):  
Anantharaj Gopalraman ◽  
Subbian Karuppuchamy ◽  
Saranyan Vijayaraghavan

VOC–JSC trade off is eliminated. Newly created surface states by OA in TiO2 facilitated the charge transfer kinetics.


2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
Yuancheng Qin ◽  
Qiang Peng

Dye-sensitized solar cells (DSSCs) have attracted considerable attention in recent years due to the possibility of low-cost conversion of photovoltaic energy. The DSSCs-based ruthenium complexes as sensitizers show high efficiency and excellent stability, implying potential practical applications. This review focuses on recent advances in design and preparation of efficient ruthenium sensitizers and their applications in DSSCs, including thiocyanate ruthenium sensitizers and thiocyanate-free ruthenium sensitizers.


Sign in / Sign up

Export Citation Format

Share Document