photocurrent density
Recently Published Documents


TOTAL DOCUMENTS

398
(FIVE YEARS 189)

H-INDEX

26
(FIVE YEARS 8)

Author(s):  
Joan Talibawo ◽  
Justine S. Nyarige ◽  
Pannan I. Kyesmen ◽  
Marie C. Cyulinyana ◽  
Mmantsae Diale

Abstract Herein we report on the effect of varied spin-coated seed layer concentrations of Iron (III) chloride hexahydrate (FeCl3.6H2O) on the photoelectrochemical performance of hydrothermally synthesized hematite nanorods. The seed layers were prepared from 0.05, 0.07, 0.09, 0.11, and 0.13 M concentrations of FeCl3.6H2O. The nanorods were vertically aligned with slight inclinations over the seed layers with the two lowest molar concentrations (0.05 and 0.07 M) of FeCl3.6H2O. A further increase in seed layer concentrations transformed the nanorods as they grew over others and agglomerated into clusters. Structural analysis using X-ray diffraction (XRD) and Raman spectroscopy demonstrated uniform hematite crystalline peaks for all the samples. All samples absorbed highly in the visible region within an onset absorption edge wavelength ranging from 624 to 675 nm. Overall, the nanorods synthesized over the lowest seed layer concentration of 0.05 M of FeCl3.6H2O exhibited the highest photocurrent density of 0.077 mA/cm2 at 1.5 V vs. reversible hydrogen electrode. The results obtained provide important information about the structural, optical, and photoelectrochemical properties of hematite nanorods synthesized over varied seed layer concentrations. This is a key contribution in understanding and enhancing the hematite nanorods performance for photocatalytic applications.


Author(s):  
Narayan Firke ◽  
Vaibhavi Gulavani ◽  
Ramchandra Sapkal ◽  
Pankaj Sagdeo ◽  
Ashish Yengantiwar

Abstract In the present study, we designed and fabricated cost-effective miniaturized versatile electrochemical deposition cell, which is found to be at par performance as compared with conventional electrodeposition techniques. A case study is being undertaken for the electrodeposition of varied thickness of bismuth ferrite (BiFeO3) films on FTO glass substrates. X-ray diffraction (XRD) patterns confirms the structural perovskite phase of BiFeO3 (BFO). UV-Visible absorption spectra and Tauc plot of BFO estimates the direct band gap which lies between 1.9 to 2.1 eV. The properties of bismuth ferrite crystal system such as electronic band structure and density of states (DOS) are investigated theoretically. Photoelectrochemical (PEC) water splitting application is carried out to investigate the best performance of BFO films of varied thickness. The best performer (BFO15) working electrode yields a photocurrent density of ~ 35 µA/cm2 at 0.2 V vs RHE under visible LED (light intensity of 100mW/cm2) in neutral 0.5 M Na2SO4 electrolyte. Incident photon to current conversion (IPCE) measurements, electrochemical impedance spectroscopy (EIS) and Mott-Schottky characteristics confirms the best performance of BFO15 photocathode film.


2022 ◽  
Author(s):  
Xing Zhang ◽  
Hao Chen ◽  
Wei Zhang ◽  
Lina Zhang ◽  
Xinyu Liu ◽  
...  

Abstract Exploring and fabricating a suitable photoanode with high catalytic activity is critical for enhancing photoelectrochemical (PEC) performance. Herein, a novel 3D hierarchical Fe2O3/SnO2 photoanode was fabricated by a hydrothermal route, combining with an annealing process. The morphology, crystal structure were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photon spectroscopy (XPS), and X-ray diffraction (XRD), respectively. The results reveal the successful preparation of Fe2O3 nanothorns on the surface of SnO2 nanosheets. The as-fabricated 3D Fe2O3/SnO2 photoanode yields obviously promoted PEC performance with a photocurrent density of approximate 5.85 mA cm-2, measured in a mixture of Na2S (0.25 M) and Na2SO3 (0.35 M) aqueous solution at 1.23 V (vs. reversible hydrogen electrode, RHE). This value of photocurrent is about 53 times higher than that of the bare SnO2 photoanode. The obvious improved PEC properties can be attributed to the 3D Fe2O3/SnO2 heterostructures that offer outstanding light harvesting ability as well as improved charge transport and separation. These results suggest that exploring a suitable 3D hierarchical photoanode is an effective approach to boost PEC performance.approach to boost PEC performance.


Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 47
Author(s):  
Vasu Prasad Prasadam ◽  
Ali Margot Huerta Flores ◽  
Jean-Nicolas Audinot ◽  
Naoufal Bahlawane

Solar-driven water splitting is a promising route toward clean H2 energy and the photoelectrochemical approach attracts a strong interest. The oxygen evolution reaction is widely accepted as the performance limiting stage in this technology, which emphasizes the need of innovative anode materials. Metal oxide semiconductors are relevant in this respect owing to their cost-effectiveness and broad availability. The combination of chemical vapor deposition and atomic layer deposition was implemented in this study for the synthesis of randomly oriented CNT-ZnO core-shell nanostructures forming an adhering porous coating. Relative to a directly coated ZnO on Si, the porous structure enables a high interface area with the electrolyte and a resulting 458% increase of the photocurrent density under simulated solar light irradiation. The photoelectrochemical characterization correlates this performance to the effective electrons withdrawing along the carbon nanotubes (CNTs), and the resulting decrease of the onset potential. In terms of durability, the CNT-ZnO core–shell structure features an enhanced photo-corrosion stability for 8 h under illumination and with a voltage bias.


Author(s):  
Wenwan Zhang ◽  
Yufei Cheng ◽  
Junfeng Zhao ◽  
Qiujie Li ◽  
Jiawei Wang ◽  
...  

Abstract Tin monosulfide (SnS), as a narrow band gap semiconductor for visible-light harvesting, nevertheless the easy formation of secondary phases such as Sn2S3 and SnS2 severely restricts its photoelectrochemical properties. Herein, we proposed a novel two-step strategy to fabricate phase-pure SnS photoelectrode with tunable conductivity on Ti foil substrate and carefully investigated the formation mechanism and photoelectrochemical properties. The tunable conductivity is determined by Na2SO4 pretreatment before annealing, which is supported by the EDS, XPS, and EPR characterizations. Na+ adsorbed to the edge of the precursor SnS2 nanosheets forming a dangling bond adsorption will protect S2- against reacting with the trace oxygen in the CVD system within a certain temperature range (< 525 ℃), thereby reducing the generation of S vacancies to adjust the S/Sn ratio and further regulating the conductivity type. Moreover, the anodic photocurrent density of SnS thin films was about 0.32 mA/cm2 at 1.23 V vs. RHE with the separation and injection efficiency of 1.22 % and 72.78 % and a maximum cathodic photocurrent density can reach approximately -0.36 mA/cm2 at 0 V vs. RHE with the separation and injection efficiency 1.15 % and 5.44 % respectively. The method shown in this work provides an effective approach to control the electrical conductivity of SnS thin films with considerable photocurrent response for phase-pure SnS.


Author(s):  
Qizhi Tian ◽  
Weimin Ouyang ◽  
Yugui Wang ◽  
Yajun Ji

Herein, Al2(WO[Formula: see text]/Bi2WO6 heterojunctions with [Formula: see text]-type structure were successfully prepared by a one-step hydrothermal method. Moreover, the effects of different composite ratios on the properties of materials were explored. The electrochemical tests and photocatalytic degradation experiments showed that the corresponding Al2(WO[Formula: see text]/Bi2WO6 heterojunctions all exhibited improved electrochemical performance and photocatalytic performance than that of the bare Bi2WO6 material. Especially, when the molar ratio of Al to Bi was 2:1, the obtained Al2(WO[Formula: see text]/Bi2WO6 heterojunction displayed the optimal photoelectric and photocatalytic performance. In detail, it depicted the highest photocurrent density, the smallest resistance and the fastest charge transfer rate. What’s more, the RhB solution (10 ppm) could be completely degraded in 30 min under visible-light irradiation, and the removal rate was almost 1.6 times than that of pure Bi2WO6 nanosheets. In the same condition, it also exhibited excellent photocatalytic performance for the degradation of tetracycline (TC) solution (10 ppm) and the K2Cr2O7 solution (40 ppm). These results fully manifested that the constructed Al2(WO[Formula: see text]/Bi2WO6 heterojunction possessed superior photoelectric conversion capacity and outstanding photocatalytic performance. Moreover, based on the obtained experimental results, a [Formula: see text]-scheme mechanism of catalytic degradation of RhB and TC under simulated solar light was proposed and discussed.


2021 ◽  
Vol 12 (1) ◽  
pp. 30
Author(s):  
Anton S. Voronin ◽  
Ivan V. Nemtsev ◽  
Maxim S. Molokeev ◽  
Mikhail M. Simunin ◽  
Ekaterina A. Kozlova ◽  
...  

This paper considers the photoelectrochemical characteristics of a composite porous TiO2 thin film with deposited plasmonic gold nanoparticles. The deposition of gold nanoparticles was carried out by the laser-induced chemical liquid-phase deposition (LCLD) method. The structural characteristics of the composite have been studied; it has been shown that the porous TiO2 film has a lattice related to the tetragonal system and is in the anatase phase. Gold nanoparticles form on the surface of a porous TiO2 film. A complex of photoelectrochemical measurements was carried out. It was shown that the deposition of plasmonic gold nanoparticles led to a significant increase in the photocurrent density by ~820%. The proposed concept is aimed at testing the method of forming a uniform layer of plasmonic gold nanoparticles on a porous TiO2 film, studying their photocatalytic properties for further scaling, and obtaining large area Au/TiO2/FTO photoelectrodes, including in the roll-to-roll process.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3445
Author(s):  
Mohamed Shaban ◽  
Mohammad BinSabt ◽  
Ashour M. Ahmed ◽  
Fatma Mohamed

Corrosion-induced iron rust causes severe danger, pollution, and economic problems. In this work, nanopowders of Fe2O3 and Fe2O3/zeolite are synthesized for the first time using rusted iron waste and natural zeolite heulandite by chemical precipitation. The chemical composition, nanomorphologies, structural parameters, and optical behaviors are investigated using different techniques. The Fe2O3/zeolite nanocomposite showed smaller sizes and greater light absorption capability in visible light than Fe2O3 nanopowder. The XRD pattern shows crystalline hematite (α-Fe2O3) with a rhombohedral structure. The crystallite sizes for the plane (104) of the Fe2O3 and Fe2O3/zeolite are 64.84 and 56.53 nm, respectively. The Fe2O3 and Fe2O3/zeolite have indirect bandgap values of 1.87 and 1.91 eV and direct bandgap values of 2.04 and 2.07 eV, respectively. Fe2O3 and Fe2O3/zeolite nanophotocatalysts are used for solar photoelectrochemical (PEC) hydrogen production. The Fe2O3/zeolite exhibits a PEC catalytic hydrogen production rate of 154.45 mmol/g.h @ 1 V in 0.9 M KOH solution, which is the highest value yet for Fe2O3-based photocatalysts. The photocurrent density of Fe2O3/zeolite is almost two times that of Fe2O3 catalyst, and the IPCE (incident photon-to-current conversion efficiency) reached ~27.34%@307 nm and 1 V. The electrochemical surface area (ECSA) values for Fe2O3 and Fe2O3/zeolite photocatalysts were 7.414 and 21.236 m2/g, respectively. The rate of hydrogen production for Fe2O3/zeolite was 154.44 mmol h−1/g. This nanophotocatalyst has a very low PEC corrosion rate of 7.6 pm/year; it can retain ~97% of its initial performance. Therefore, the present research can be applied industrially as a cost-effective technique to address two issues at once by producing solar hydrogen fuel and recycling the rusted iron wires.


Photochem ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 523-536
Author(s):  
Mohamed Salleh Mohamed Saheed ◽  
Norani Muti Mohamed ◽  
Balbir Singh Mahinder Singh ◽  
Qamar Wali ◽  
Mohamed Shuaib Mohamed Saheed ◽  
...  

The effect of foam-like 3D graphene (3DG) in an electron transport material (ETM), viz. ZnO thin film, on the steady-state photoluminescence (PL), light-harvesting efficiency (LHE), photocurrent density (JSC), photovoltage (VOC), and charge transport parameters of perovskite solar cells (PSCs) are systematically investigated. The ETM is developed by spin coating a ZnO precursor solution containing varying amounts of 3DG on conducting glass substrates and appropriate annealing. A significant improvement in the photoconversion efficiency of PSCs is observed for a low concentration of 3DG in ZnO. The current–voltage and electrochemical impedance spectroscopy measurements show that the addition of 3DG enhances the VOC due to efficient electron–hole separation and charge transport compared to the pristine ZnO. These studies offer a route for further advances in enhancing the optoelectronic properties of ETM for artificial photosynthesis and photocatalysis devices.


Sign in / Sign up

Export Citation Format

Share Document