Controllable synthesis of spinel lithium nickel manganese oxide cathode material with enhanced electrochemical performances through a modified oxalate co-precipitation method

2015 ◽  
Vol 274 ◽  
pp. 1180-1187 ◽  
Author(s):  
Hongmei Liu ◽  
Guobin Zhu ◽  
Li Zhang ◽  
Qunting Qu ◽  
Ming Shen ◽  
...  
2010 ◽  
Vol 105-106 ◽  
pp. 664-667
Author(s):  
Sheng Wen Zhong ◽  
Wei Hu ◽  
Qian Zhang

The precursor of Mn0.75Ni0.25CO3 is prepared by carbonate co-precipitation method. And the cathode material 0.5Li2MnO3•0.5LiMn0.5Ni0.5O2 is synthesized with two stages calcining temperatures T1 and T2. T1 represents 400°C, 500°C, 600°C and T2 is selected at 750°C, 850°C, 950°C respectively. XRD Patterns shows that the cathode material has the integrated structures of Li2MnO3 and LiMO2, and it has better crystallization during the rise of calcined temperature at 950°C. The electrochemical performances tests indicates that the initial discharge specific capacity are greater than 220mAh/g at the current density 0.2 mA/cm2 in 2.5-4.6V at room temperature. When cathode material is calcined at 750°C, its discharge specific capacity even reach to 248mAh/g, but the cathode material has more perfect general electrochemical properties during calcined temperature at 950°C.


Sign in / Sign up

Export Citation Format

Share Document