xrd patterns
Recently Published Documents





Valeria Murgulov ◽  
Catherine Schweinle ◽  
Michael Daub ◽  
Harald Hillebrecht ◽  
Michael Fiederle ◽  

AbstractSingle crystals of lead-free halide double perovskite Cs2AgBiBr6 sensor material manifest a remarkable potential for application in radiation detection and imaging. In this study, the purity and crystallinity of solution-grown Cs2AgBiBr6 single crystals with cubic Fm$$\overline{3}$$ 3 ¯ m symmetry have been corroborated by powder XRD measurements, while the single crystal XRD patterns reveal the dominant {111} lattice planes parallel to the sample surfaces. A wider range of lower resistivity values (106–109 Ωcm) was obtained from the I-V measurements compared to the 1.55 × 109–6.65 × 1010 Ωcm values from the van der Pauw method, which is typically higher for the Ag than for the carbon paint electrodes. Charge-carrier mobility values estimated from the SCLC method for the carbon paint-Cs2AgBiBr6 (1.90–4.82 cm2V−1 s−1) and the Ag-Cs2AgBiBr6 (0.58–4.54 cm2V−1 s−1) including the density of trap states (109–1010 cm−3) are comparable. Similar values of 1.89 cm2V−1 s−1 and 2.36 cm2V−1 s−1 are derived from the Hall effect measurements for a sample with carbon and Ag electrodes, respectively. The key electrical parameters including the X-ray photoresponse measurements indicate that the Cs2AgBiBr6 samples synthesized in this study satisfy requirements for radiation sensors. Graphical abstract

2022 ◽  
Hamid Hosseinzadeh ◽  
Hamidreza Oveisi

Abstract In the present study, CoFe2O4 and CoFe2-xGdxO4 nanoparticles were synthesized by the hydrothermal process. The CoFe2O4 nanoparticles were synthesized at different temperatures (70oC, 100oC, 150oC, and 200oC), molar ratio of CoCl2/ FeCl3 (0/2, 0.75/2, 1/2, 1.5/2, and 2/2). Gadolinium-doped cobalt ferrite (CoFe2-xGdxO4) nanoparticles have also been synthesized with Gd/Fe molar ratios of 0.18 and 0.53. The XRD patterns indicate that cobalt ferrite and Gadolinium-doped cobalt ferrite nanoparticles have been successfully synthesized without impurities with a medium degree of crystallinity. The XRD patterns show that by increasing the synthesis temperature from 70oC to 200oC, the size of the nanoparticles decreased from 50.49nm to 32.45nm while the morphology of the nanoparticles also changed from a shapeless and agglomerated state to a spherical shape. The XPS curve illustrated several peaks corresponding to Fe+3, Co+2, and O 1s. The binding energies for Co and Fe were consistent with Fe 2p and Co 2p binding energies for cobalt ferrite nanoparticles. The magnetic saturation value (Ms) increased from 17.253 emu/g to 54.438 emu/g with a rise in the synthesis temperature. The effects of FeCl3/CoCl2 molar ratio on the magnetic properties showed the highest value of Ms (54.438 emu/g) and the coercivity (HC) of 744.56 Oe for a 2/1 molar ratio. The addition of gadolinium to the composition resulted in a reducing of the magnetic properties of nanoparticles; accordingly, the amount of saturated magnetization was reduced to 22.469 emu/g. Another effect of gadolinium dopant in the composition was a change in nanoparticle morphology from spherical to rod shape. The final aim of this study was to investigate the possible utilization of CoFe2O4 and CoFe2-xGdxO4 nanoparticles in medical treatment in the near future.

2022 ◽  
Vol 23 (2) ◽  
pp. 685
Nerea Guembe-Michel ◽  
Adrián Durán ◽  
Rafael Sirera ◽  
Gustavo González-Gaitano

Pseudopolyrotaxanes (PPRs) are supramolecular structures consisting of macrocycles able to thread on a linear polymer chain in a reversible, non-covalent way, often referred to in the literature as “molecular necklaces”. While the synthesis and reaction mechanisms of these structures in solution have been widely described, their solvent-free production has received little attention, despite the advantages that this route may offer. We propose in this work a kinetic mechanism that describes the PPR formation in the solid phase as a process occurring in two consecutive stages. This mechanism has been used to investigate the spontaneous formation of a PPR that occurs when grinding α-Cyclodextrin (α-CD) with polyethylene glycol (PEG). In the threading stage, the inclusion of the polymer and subsequent release of the water molecules lodged in the cavity of the macrocycle cause vibrational changes that are reflected in the time-dependence of the FTIR-ATR spectra, while the further assembly of PPRs to form crystals produces characteristic reflections in the XRD patterns, due to the channel-like arrangement of CDs, that can be used to track the formation of the adduct in crystalline form. The effects that working variables have on the kinetics of the reaction, such as temperature, feed ratio, molar mass of the polymer and the introduction of an amorphous block in the polymer structure, have been investigated. The rate constants of the threading step increase with the temperature and the activation energy of the process increases at lower proportions of CD to PEG. This is attributed to the lower degree of covering of the polymer chain with CDs that reduces the hydrogen-bonding driven stabilization between adjacent macrocycles. The formation of crystalline PPR, which takes place slowly at room temperature, is markedly promoted at higher temperatures, with lower proportions of CD favoring both the formation and the growth of the crystals. The molar mass of the polymer does not modify the typical channel-like arrangement of packed PPRs but the conversion into crystalline PPR diminishes when using PEG1000 instead of PEG400. At a microscopic level, the crystals arrange into lamellar structures, in the order of hundreds of nm, embedded in an amorphous-like matrix. The introduction of a polypropylene oxide block in the structure of the polymer (Pluronic L62) renders poorer yields and a considerable loss of crystallinity of the product of the reaction. The methodology here proposed can be applied to the general case of inclusion complexes of CDs with drugs in the solid phase, or to multicomponent systems that contain polymers as excipients in pharmaceutical formulations along with CDs.

2022 ◽  
Vol 8 (1) ◽  
pp. 4
Petros Kasaira Mubari ◽  
Théotime Beguerie ◽  
Marc Monthioux ◽  
Elsa Weiss-Hortala ◽  
Ange Nzihou ◽  

Structural properties of carbonized cellulose were explored to conjugate the outcomes from various characterization techniques, namely X-ray diffraction (XRD), Raman spectroscopy, and high-resolution transmission electron microscopy. All these techniques have evidenced the formation of graphene stacks with a size distribution. Cellulose carbonized at 1000 and 1800 °C at a heating rate of 2 °C/min showed meaningful differences in Raman spectroscopy, whereas in XRD, the differences were not well pronounced, which implies that the crystallite sizes calculated by each technique have different significations. In the XRD patterns, the origin of a specific feature at a low scattering angle commonly reported in the literature but poorly explained so far, was identified. The different approaches used in this study were congruous in explaining the observations that were made on the cellulose-derived carbon samples. The remnants of the basic structural unit (BSU) are developed during primary carbonization. Small graphene-based crystallites inherited from the BSUs, which formerly developed during primary carbonization, were found to coexist with larger ones. Even if the three techniques give information on the average size of graphenic domains, they do not see the same characteristics of the domains; hence, they are not identical, nor contradictory but complementary. The arguments developed in the work to explain which characteristics are deduced from the signal obtained by each of the three characterization techniques relate to physics phenomena; hence, they are quite general and, therefore, are valid for all kind of graphenic materials.

Montri Aiempanakit ◽  
Jariyaporn Sangkaworn ◽  
Nattawan Worawannotai ◽  
Kritapas Laohhasurayotin ◽  
Weerachai Sangchay ◽  

In this study, a laccaic acid-modified TiO2 photocatalyst (Lac-TiO2) was prepared via an impregnation method with 0.50, 1.00, 2.50, and 5.00 wt.% laccaic acid. The products’ physical properties were examined through X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), X-ray photoemission spectroscopy (XPS), UV-Vis diffused reflectance spectroscopy (DRS), Fourier-transform infrared spectroscopy (FTIR), nitrogen adsorption/desorption, and photoluminescence (PL) spectroscopy. A possible photocatalytic mechanism was also proposed. XRD patterns revealed the anatase phase of TiO2 and Lac-TiO2 samples. High-magnification FE-SEM images showed that the TiO2 and Lac-TiO2 samples exhibited spherical-like structures. XPS results complementarily confirmed the presence of Ti, O, and C as the main elements of the Lac-TiO2 samples. Interestingly, the DRS spectra of the Lac-TiO2 samples extended into the visible region. FTIR spectra presented the characteristic bands of TiO2 and hydroxyl groups on the TiO2 surface. Instead of hydroxyl groups, the characteristic bands of laccaic acid were observed on the surface of the Lac-TiO2 samples. The photocatalytic properties of the Lac-TiO2 samples were evaluated in terms of methyl orange degradation under visible light irradiation. The Lac-TiO2 samples showed higher photocatalytic performance than the TiO2 sample.

2021 ◽  
Vol 50 (12) ◽  
pp. 3569-3582
Nur Azmina Roslan ◽  
Hendrik O. Lintang ◽  
Leny Yuliati Leny Yuliati

Cyanamide as the source of carbon and nitrogen was used to modify iron(III) oxide (Fe2O3) photocatalyst. While X-ray diffraction (XRD) patterns confirmed that the cyanamide-modified Fe2O3 photocatalysts have comparable crystallinity to that of the unmodified Fe2O3, the diffuse reflectance ultraviolet-visible (DR UV-vis) spectra obviously showed additional light absorption around 500-800 nm on the cyanamide-modified Fe2O3, resulting in a better absorption capability under visible light irradiation. The presence of cyanamide modifier decreased the fluorescence emission intensity of Fe2O3, implying the reduced electron-hole recombination on the Fe2O3 and/or blocked emission sites by the modifier. The presence of carbon and nitrogen on the modified Fe2O3 photocatalysts was confirmed by the elemental analyzer. Photocatalytic activities of Fe2O3 and cyanamide-modified Fe2O3 were then evaluated for degradation of phenol under UV and visible light irradiation. Modification of Fe2O3 with cyanamide significantly improved the degradation of phenol from 30 to 75% under UV light irradiation and from 0 to 80% under visible light irradiation. Photocatalytic degradation of phenol was also investigated in the presence of urea or formaldehyde or both urea and formaldehyde. Even though the percentage of phenol degradation decreased in the presence of other pollutants, it was demonstrated that cyanamide modified iron(III) oxide photocatalysts still gave good activity towards degradation of phenol even in the presence of other organic pollutants.

2021 ◽  
Vol 116 ◽  
pp. 5-14
Marta Babicka ◽  
Magdalena Woźniak ◽  
Kinga Szentner ◽  
Sławomir Borysiak ◽  
Krzysztof Dwiecki ◽  

The aim of this study was to compare parameters of nanocellulose obtained by two different procedures: hydrolysis with ionic liquids (1-allyl-3-methylimidazolium chloride and 1-ethyl-3-methylimidazolium acetate) and hydrolysis with ionic liquids in combination with hydrolysis using a cellulolytic enzyme from Trichoderma reesei. Avicel cellulose was treated with two ionic liquids: 1-allyl-3-methylimidazolium chloride (AmimCl) and 1-ethyl 3-methylimidazolium acetate (EmimOAc). In the two-step hydrolysis cellulose after treatment with ionic liquids was additionally hydrolyzed with a solution of enzymes. In order to characterize the obtained material, the following analyses were used: infrared spectroscopy, X-ray diffraction and dynamic light scattering. The results indicated that cellulose obtained by two-step nanocellulose production methods (first hydrolysis with ionic liquids and then with enzymes) showed similar parameters (particle size, XRD patterns and degree of crystallinity) as the material after the one-step process, i.e. hydrolysis with ionic liquids.

Foods ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 73
Donghyeon Lee ◽  
Byoungseung Yoo

Fluidized-bed agglomeration (FBA) is known to modify the structure and rheology of food powders. In this study, guar gum (GG) powders with various concentrations of sucrose binder (0%, 10%, 20%, or 30%) were subjected to fluidized-bed agglomeration. Subsequently, changes in the characteristics of the GG powders were evaluated by using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), particle size distribution (PSD) analysis, and rheological and dispersibility measurements. SEM images and FTIR spectra revealed surface morphology changes and structural modification, respectively, in the original GG powder after FBA, although the changes observed in FTIR spectra were only slightly dependent on sucrose concentration at low concentrations (0–20%). XRD patterns confirmed that the crystallinity of the GG powder was affected by FBA, but not greatly so by binder concentration. The PSD results showed that the GG particle size was increased by FBA and there was a clear relationship between sucrose concentration (10–30%) and mean particle size. The rheological behavior and dispersibility of GG (properties that are known to be affected by the structure of a powder) were also influenced by sucrose concentration. To sum up, FBA and the concentration of sucrose binder used can serve as factors for modifying GG powder.

2021 ◽  
Tran Minh Thi ◽  
Nguyen Mau Lam ◽  
Do Khanh Tung ◽  
Nguyen Manh Nghia ◽  
Duong Quoc Van ◽  

Abstract Polyaniline/Fe0.90Zn0.10Fe2O4 (PANI/Zn0.10Fe2.90O4) nanocomposites were synthesized by a chemical method and an onsite polymerization method. XRD patterns showed that the Zn0.10Fe2.90O4 grain size about 12 nm, while TEM image showed grain size from 10 to 20 nm. The results of Raman spectra and DTA analyses showed that PANI participated in part of the PANI/Zn0.10Fe2.90O4 nanocomposite samples. The grain size of PANI/Zn0.10Fe2.90O4 samples measured by SEM was about 35–50 nm. These results demonstrated the shell–core structures of the nanocomposite material. The magnetization measurements at room temperature showed that in 1250 Oe magnetic field, the saturation magnetic moment of PANI/Zn0.10Fe2.90O4 samples decreased from 71.2 to 42.3 emu/g when the PANI concentration increased from 0 % to 15 %. The surface area and porous structure of nanoparticles were investigated by the BET method at 77 K and a relative pressure P/P0 of about 1. The arsenic adsorption capacity of the PANI/Zn0.10Fe2.90O4 sample with the PANI concentration of 5 % was better than that of Fe3O4 and Zn0.10Fe2.90O4 in a solution of pH 7. In the solution with pH P14, the arsenic adsorption of magnetic nanoparticles was insignificant. Due to substitution of Fe ions by Zn transition metal and coating polyaniline, these materials could be reabsorbed and reused.

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 202
Dumitru Doru Burduhos Nergis ◽  
Petrica Vizureanu ◽  
Andrei Victor Sandu ◽  
Diana Petronela Burduhos Nergis ◽  
Costica Bejinariu

Coal ash-based geopolymers with mine tailings addition activated with phosphate acid were synthesized for the first time at room temperature. In addition, three types of aluminosilicate sources were used as single raw materials or in a 1/1 wt. ratio to obtain five types of geopolymers activated with H3PO4. The thermal behaviour of the obtained geopolymers was studied between room temperature and 600 °C by Thermogravimetry-Differential Thermal Analysis (TG-DTA) and the phase composition after 28 days of curing at room temperature was analysed by X-ray diffraction (XRD). During heating, the acid-activated geopolymers exhibited similar behaviour to alkali-activated geopolymers. All of the samples showed endothermic peaks up to 300 °C due to water evaporation, while the samples with mine tailings showed two significant exothermic peaks above 400 °C due to oxidation reactions. The phase analysis confirmed the dissolution of the aluminosilicate sources in the presence of H3PO4 by significant changes in the XRD patterns of the raw materials and by the broadening of the peaks because of typically amorphous silicophosphate (Si–P), aluminophosphate (Al–P) or silico-alumino-phosphate (Si–Al–P) formation. The phases resulted from geopolymerisation are berlinite (AlPO4), brushite (CaHPO4∙2H2O), anhydrite (CaSO4) or ettringite as AFt and AFm phases.

Sign in / Sign up

Export Citation Format

Share Document