20 year outcomes of ACL reconstruction with hamstring tendon autograft. The catastrophic effect of age and posterior tibial slope

2017 ◽  
Vol 20 ◽  
pp. 79
Author(s):  
L. Salmon ◽  
E. Heath ◽  
H. Akrawi ◽  
J. Roe ◽  
L. Pinczewski
2017 ◽  
Vol 5 (5_suppl5) ◽  
pp. 2325967117S0017
Author(s):  
Justin Roe ◽  
Feisal Shah ◽  
Emma Fitzgibbon ◽  
Lucy Salmon ◽  
James Linklater ◽  
...  

Introduction: The purpose of this study was to document the prospective longitudinal outcome of ‘isolated’ anterior cruciate ligament (ACL) ruptures treated with anatomical endoscopic reconstruction using hamstring tendon autograft over 20 years. Long term outcomes were compared between those undergoing ACL reconstruction age 18 or less and those >18 years the time of surgery. Methods: A total of 100 consecutive men and 100 consecutive women with ‘isolated’ ACL rupture underwent four-strand hamstring tendon reconstruction with anteromedial portal femoral tunnel drilling and interference screw fixation by a single surgeon. At the time of ACL reconstruction 39 participants were aged 18 or less, 81 were aged 19 to 25 and 80 were over 25. Reviews were performed pre-operatively and at 1, 2, 7, 15 and 20 years post-operatively. Outcomes included further ACL injury, clinical examination, subjective and objective scoring systems, and radiological assessment. Results: Further ACL injury occurred in 55 of the 200 patients (28%), 37 ruptured the ACL graft and 22 ruptured the contralateral ACL. ACL graft rupture was significantly increased in the young; 39% in those aged 18 or less, 21% of those aged 19-25 and 6% of those over 25 years (p=0.001). Participants with a posterior tibial slope of 12 degrees or more sustained a further ACL injury in 65% of cases. Moderate to severe radiological degenerative change was evident in 14% at 20 years. Outcomes were not statistically different between those aged 18 or less and those >18 years for the variables of IKDC subjective score (p=0.98), rate of return to preinjury activity level (p=0.32), current activity level, or degree of radiological degenerative change at 20 years (p=0.65). Conclusions: ACL reconstructive surgery in patients with an ‘isolated’ rupture using this technique was associated with good long term outcomes and does not appear to cause osteoarthritis, regardless of age. However further ACL injury after ACL reconstruction is significantly more common in the young and those with a high posterior tibial slope. **This study was performed with support from AOA Research Foundation


2020 ◽  
Vol 8 (7_suppl6) ◽  
pp. 2325967120S0035
Author(s):  
Rodney Benner ◽  
Jonathan Jones ◽  
Tinker Gray ◽  
K. Donald Shelbourne

Objectives: To examine the relationship of posterior tibial slope and rate of graft tear or contralateral anterior cruciate ligament (ACL) tear among patients undergoing primary or revision ACL reconstruction with patellar tendon autograft. Methods: From June 2001 to 2015, 2,796 patients received primary or revision ACL reconstruction with patellar tendon autograft (PTG) and were followed prospectively to determine rate of graft tear and contralateral ACL tear. Minimum follow-up for study inclusion was 4 years. Posterior tibial slope (PTS) was measured preoperatively on digital lateral view radiographs with knee flexion between 30° and 45°. Intersecting lines were drawn along the medial tibial plateau and the posterior tibia; the value of the acute angle at the lines’ intersection was then subtracted from 90° to obtain the PTS. This procedure was carried out by a clinical assistant with interrater reliability of 0.89. Chi-square analysis, Pearson correlation, and t-tests were used to determine relationships between rate of graft tear or contralateral ACL tear and PTS, age, and sex among primary and revision surgery groups. A threshold of PTS ≥10° was used for analysis. Results: The mean age of patients was 24.3±10.2 years for patients undergoing primary ACL reconstruction (n=2472) and 24.3±8.8 years for revision ACL reconstruction (n=324). The mean follow-up time was 11.6 ± 4.0 years. The rate of primary graft tear was 5.1% (n=126), and primary contralateral ACL tear rate was 4.9% (n=121). The rate of revision graft tear was 5.9% (n=19), and revision contralateral tear rate was 1.9% (n=6). Among primary reconstructions, the mean surgery age of patients who experienced graft tear (19.2 ± 6.3 years) or contralateral tear (21.5 ± 9.5 years) were significantly younger (P<.001, P=.0011, respectively) than patients who did not suffer a subsequent tear (24.7 ± 10.3 years). The mean PTS among primary graft tears was 5.4 ± 3.1°, which was statistically significantly higher than the mean of 4.8 ± 2.9° for patients without tear (P=.041). The mean PTS was 4.9 ± 3.3° for patients with contralateral tears, which was not statistically significant different than other groups. Furthermore, primary reconstruction patients with PTS≥10° had a significantly higher rate of graft tear (9.6%) than patients with PTS ≤9° (4.7%) (P=0.004), but not a higher rate of contralateral tear. Among patients undergoing revision surgery, there were no statistically significant differences between graft tear, contralateral tear, and no tear groups with relation to age, PTS, or PTS ≥10°. Among all patients (primary or revision group), there was no difference in PTS between sexes (P=0.278), nor was surgery age significantly correlated to PTS (R=0.0226). Conclusion: Higher PTS appears to be correlated to higher rates of ACL graft tear in patients undergoing primary ACL reconstruction with PTG, particularly when PTS is greater than 10°. However, rate of graft tear remains low (5.1% overall, 9.6% with PTS≥10°). Furthermore, for patients undergoing revision surgery, there is no significant association between PTS and rate of subsequent tear. Therefore, caution should be exercised when considering more radical interventions, such as osteotomy, to prevent retear in patients with high PTS.


2017 ◽  
Vol 46 (3) ◽  
pp. 531-543 ◽  
Author(s):  
Lucy J. Salmon ◽  
Emma Heath ◽  
Hawar Akrawi ◽  
Justin P. Roe ◽  
James Linklater ◽  
...  

Background: No well-controlled studies have compared the long-term outcome of anterior cruciate ligament (ACL) reconstruction with hamstring tendon autograft between adolescents and adults. Increased posterior tibial slopes (PTSs) have been reported in the ACL-injured versus controls, but the effect of PTS on the outcome after reconstruction is relatively unexplored. Purpose: To compare the prospective longitudinal outcome of “isolated” ACL ruptures treated with anatomic endoscopic ACL reconstruction using hamstring tendon autograft over 20 years in adolescent and adult cohorts and to examine factors for repeat ACL injury. Study Design: Case-control study; Level of evidence, 3. Methods: A single-surgeon series of 200 consecutive patients undergoing isolated primary ACL reconstruction with hamstring tendon autograft were prospectively studied. Subjects were assessed preoperatively and at 2, 7, 15, and 20 years postoperatively. Outcomes included International Knee Documentation Committee (IKDC) Knee Evaluation, IKDC subjective scores, KT-1000 instrumented laxity testing, and radiological evaluation of degenerative change and medial tibial slope. Twenty-year outcomes were compared between those who underwent surgery at the age of 18 years or younger (adolescent group, n = 39) and those who underwent surgery when older than 18 years (adult group, n = 161). Results: At 20 years, 179 of 200 subjects were reviewed (89.5%). ACL graft rupture occurred in 37 subjects and contralateral ACL injury in 22 subjects. Of those with intact ACL grafts at 20 years, outcomes were not statistically different between adolescents and adults for the variables of IKDC subjective score ( P = .29), return to preinjury activity level ( P = .84), current activity level ( P = .69), or degree of radiological degenerative change at 20 years ( P = .51). The adolescent group had a higher proportion of grade 1 ligamentous laxity testing compared with the adult group ( P = .003). Overall, ACL graft survival at 20 years was 86% for adults and 61% for adolescents (hazard ration, 3.3; P = .001). The hazard for ACL graft rupture was increased by 4.8 in adolescent males and 2.5 in adolescent females compared with adults. At 20 years, the ACL survival for adolescents with a PTS of ≥12° was 22%. The hazard for ACL graft rupture was increased by 11 in adolescents with a PTS of ≥12° ( P = .001) compared with adults with a PTS <12°. Conclusion: Repeat ACL injury after isolated ACL reconstruction is common, occurring in 1 in 3 over 20 years. In the absence of further injury, isolated ACL reconstruction using this technique was associated with good long-term outcomes with respect to patient-reported outcomes and return to sports, regardless of age. However, mild ligament laxity and ACL graft rupture after ACL reconstruction are significantly more common in adolescents, especially adolescent males, compared with adults. PTS of 12° or more is the strongest predictor of repeat ACL injury, and its negative effect is most pronounced in adolescents.


2020 ◽  
Vol 8 (5_suppl4) ◽  
pp. 2325967120S0028
Author(s):  
Jörg Dickschas

Aims and Objectives: In recent publications on acl-ruptures and especially on failure of acl reconstruction there comes a strong focus on posterior tibial slope (PTS). ACL reconstructions with a PTS of >12° have an 8 times higher risk of recurrent instability and reconstruction failure. But many questions stay unclear so far-When do we have to correct the tibial slope? How do we correct it? What about simultaneous frontal axis deviations? In this publication a new algorhythm is presented. Materials and Methods: The following aspects have to be evaluated Is the PTS the only dimension of the deformity or do we have to correct the frontal axis simultaneuosly? Performing a anterior closed wedge extension osteotomy: when do we go distal the tuberosity and when do we perform a tuberosity osteotomy and use it as “bio plating”? Osteosynthesis only screws or always plate? Are there indications for a contineous correction, f.e. with a hexapod? Whats the role of preoperative range of motion of the knee (especially extension)? Always tunnel filling in the same surgery? What about PCL insufficiency and low PTS? Results: An algorhythm is presented giving a treatment path for the different questions mentioned. The procedures are shown step by step in clinical examples and surgery documentation for every pathway. Conclusion: Posterior tibial slope plays an critical role in ACl recontruction. In primary ACl tear a slope correction is probably not indicated. In ACL reconstruction failure a analysis of the PTS needs to be done and correction needs to be discussed. Simultaneuous varus deormities need to be corrected by openwedge valgisation - extension high tibial osteotomy (HTO), while as isolated PTS elevation is subject to an anterior closed wedge extension HTO. Preoperative range of motion needs to be respected not to create hyperextension. Osteosynthesis can be perormed with only screws using the tibial tubercle as “bio-plating”. In cases of former bone-tendeon-bone (BTB) ACL reconstruction a tibial tubercle osteotomy should be avoided and a infratuberositeal osteotomy should be performed and stabilized with plate osteosynthesis. In severe postraumatic cases contineous correction of the slope with fixateur externe, f.e. hexapodes, needs to be performed.


2015 ◽  
Vol 43 (9) ◽  
pp. 2182-2188 ◽  
Author(s):  
Andreas Persson ◽  
Asle B. Kjellsen ◽  
Knut Fjeldsgaard ◽  
Lars Engebretsen ◽  
Birgitte Espehaug ◽  
...  

2019 ◽  
Vol 47 (2) ◽  
pp. 285-295 ◽  
Author(s):  
Alberto Grassi ◽  
Luca Macchiarola ◽  
Francisco Urrizola Barrientos ◽  
Juan Pablo Zicaro ◽  
Matias Costa Paz ◽  
...  

Background: Tibiofemoral anatomic parameters, such as tibial slope, femoral condyle shape, and anterior tibial subluxation, have been suggested to increase the risk of anterior cruciate ligament (ACL) reconstruction failure. However, such features have never been assessed among patients experiencing multiple failures of ACL reconstruction. Purpose: To compare the knee anatomic features of patients experiencing a single failure of ACL reconstruction with those experiencing multiple failures or with intact ACL reconstruction. Study: Case-control study; Level of evidence, 3. Methods: Twenty-six patients who experienced failure of revision ACL reconstruction were included in the multiple-failure group. These patients were matched to a group of 25 patients with failure of primary ACL reconstruction and to a control group of 40 patients who underwent primary ACL reconstruction with no failure at a minimum follow-up of 24 months. On magnetic resonance imaging (MRI), the following parameters were evaluated: ratio between the height and depth of the lateral and medial femoral condyles, the lateral and medial tibial plateau slopes, and anterior subluxation of the lateral and medial tibial plateaus with respect to the femoral condyle. The presence of a meniscal lesion during each procedure was evaluated as well. Anatomic, demographic, and surgical characteristics were compared among the 3 groups. Results: The patients in the multiple-failure group had significantly higher values of lateral tibial plateau slope ( P < .001), medial tibial plateau slope ( P < .001), lateral tibial plateau subluxation ( P < .001), medial tibial plateau subluxation ( P < .001), and lateral femoral condyle height/depth ratio ( P = .038) as compared with the control group and the failed ACL reconstruction group. Moreover, a significant direct correlation was found between posterior tibial slope and anterior tibial subluxation for the lateral ( r = 0.325, P = .017) and medial ( r = 0.421, P < .001) compartments. An increased anterior tibial subluxation of 2 to 3 mm was present in patients with a meniscal defect at the time of the MRI as compared with patients who had an intact meniscus for both the lateral and the medial compartments. Conclusion: A steep posterior tibial slope and an increased depth of the lateral femoral condyle represent a common finding among patients who experience multiple ACL failures. Moreover, higher values of anterior subluxation were found among patients with repeated failure and those with a medial or lateral meniscal defect.


2019 ◽  
Vol 7 (11) ◽  
pp. 232596711987937 ◽  
Author(s):  
Richard J. Napier ◽  
Enrique Garcia ◽  
Brian M. Devitt ◽  
Julian A. Feller ◽  
Kate E. Webster

Background: Increased posterior tibial slope has been identified as a possible risk factor for injury to the anterior cruciate ligament (ACL) and has also been shown to be associated with ACL reconstruction graft failure. It is currently unknown whether increased posterior tibial slope is an additional risk factor for further injury in the context of revision ACL reconstruction. Purpose: To determine the relationship between posterior tibial slope and further ACL injury in patients who have already undergone revision ACL reconstruction. Study Design: Cohort study; Level of evidence, 3. Methods: A total of 330 eligible patients who had undergone revision ACL reconstruction between January 2007 and December 2015 were identified from a clinical database. The slope of the medial and lateral tibial plateaus was measured on perioperative lateral radiographs by 2 fellowship-trained orthopaedic surgeons using a digital software application. The number of subsequent ACL injuries (graft rupture or a contralateral injury to the native ACL) was determined at a minimum follow-up of 2 years (range, 2-8 years). Tibial slope measurements were compared between patients who sustained further ACL injury to either knee and those who did not. Results: There were 50 patients who sustained a third ACL injury: 24 of these injuries were to the knee that underwent revision ACL reconstruction, and 26 were to the contralateral knee. Medial and lateral slope values were significantly greater for the third-injury group compared with the no–third injury group (medial, 7.5° vs 6.3° [ P = .01]; lateral, 13.6° vs 11.9° [ P = .001]). Conclusion: Increased posterior tibial slope, as measured from lateral knee radiographs, was associated with increased risk of graft rupture and contralateral ACL injury after revision ACL reconstruction. This is consistent with the concept that increased posterior slope, particularly of the lateral tibial plateau, is an important risk factor for recurrent ACL injury.


Sign in / Sign up

Export Citation Format

Share Document