Coulomb stress perturbation after great earthquakes in the Sumatran subduction zone: Potential impacts in the surrounding region

2019 ◽  
Vol 180 ◽  
pp. 103869
Author(s):  
Qiang Qiu ◽  
Chung-Han Chan
Science ◽  
1990 ◽  
Vol 250 (4985) ◽  
pp. 1248-1251 ◽  
Author(s):  
M. K.-F. Ng ◽  
P. H. Leblond ◽  
T. S. Murty

2006 ◽  
Vol 14 (2) ◽  
pp. 181-191 ◽  
Author(s):  
M.-A. GUTSCHER

Great earthquakes and tsunami can have a tremendous societal impact. The Lisbon earthquake and tsunami of 1755 caused tens of thousands of deaths in Portugal, Spain and NW Morocco. Felt as far as Hamburg and the Azores islands, its magnitude is estimated to be 8.5–9. However, because of the complex tectonics in Southern Iberia, the fault that produced the earthquake has not yet been clearly identified. Recently acquired data from the Gulf of Cadiz area (tomography, seismic profiles, high-resolution bathymetry, sampled active mud volcanoes) provide strong evidence for an active east dipping subduction zone beneath Gibraltar. Eleven out of 12 of the strongest earthquakes (M>8.5) of the past 100 years occurred along subduction zone megathrusts (including the December 2004 and March 2005 Sumatra earthquakes). Thus, it appears likely that the 1755 earthquake and tsunami were generated in a similar fashion, along the shallow east-dipping subduction fault plane. This implies that the Cadiz subduction zone is locked (like the Cascadia and Nankai/Japan subduction zones), with great earthquakes occurring over long return periods. Indeed, the regional paleoseismic record (contained in deep-water turbidites and shallow lagoon deposits) suggests great earthquakes off South West Iberia every 1500–2000 years. Tsunami deposits indicate an earlier great earthquake struck SW Iberia around 200 BC, as noted by Roman records from Cadiz. A written record of even older events may also exist. According to Plato's dialogues The Critias and The Timaeus, Atlantis was destroyed by ‘strong earthquakes and floods … in a single day and night’ at a date given as 11,600 BP. A 1 m thick turbidite deposit, containing coarse grained sediments from underwater avalanches, has been dated at 12,000 BP and may correspond to the destructive earthquake and tsunami described by Plato. The effects on a paleo-island (Spartel) in the straits of Gibraltar would have been devastating, if inhabited, and may have formed the basis for the Atlantis legend.


2016 ◽  
Vol 173 (10-11) ◽  
pp. 3247-3271 ◽  
Author(s):  
G. A. Papadopoulos ◽  
G. Minadakis

2009 ◽  
Vol 54 (1) ◽  
pp. 27-73 ◽  
Author(s):  
George R. Priest ◽  
Chris Goldfinger ◽  
Kelin Wang ◽  
Robert C. Witter ◽  
Yinglong Zhang ◽  
...  

2010 ◽  
Vol 10 (9) ◽  
pp. 1899-1911 ◽  
Author(s):  
A. Krabbenhoeft ◽  
R. W. Weinrebe ◽  
H. Kopp ◽  
E. R. Flueh ◽  
S. Ladage ◽  
...  

Abstract. Earthquake history shows that the Sunda subduction zone of the Indonesian margin produces great earthquakes offshore Sumatra, whereas earthquakes of comparable magnitude are lacking offshore Java and the Lesser Sunda islands. Morphological structures in multibeam bathymetric data across the forearc relate with the extent of the seismogenic zone. Its updip limit corresponds to the slope break, most distinct off Java and Lesser Sunda islands, where we find coincident narrow, uniform, continuous outer arc ridges. Their landward termination and a shallow upper plate mantle mark the downdip limit of the seismogenic zone. In contrast the outer arc ridges off Sumatra are wider and partly elevated above sea level forming the forearc islands. The downdip limit of the seismogenic zone coincides with a deeper upper plate mantle. Sunda Strait marks a transition zone between the Sumatra and Java margins. We find the differences along the Sunda margin, especially the wider extent of the seismogenic zone off Sumatra, producing larger earthquakes, to result from the interaction of different age and subduction direction of the oceanic plate. We attribute a major role to the sediment income and continental/oceanic upper plate nature of Sumatra/Java influencing the composition and deformation style along the forearc and subduction fault.


2014 ◽  
Vol 9 (3) ◽  
pp. 330-338 ◽  
Author(s):  
Masanobu Shishikura ◽  

Because the 2011 great Tohoku earthquake was accompanied by phenomena similar to those associated with the 869 Jogan earthquake, as reconstructed on the basis of historical and geological evidence, paleoseismology is recognized for its potential effectiveness in earthquake forecasting. In attempts to avoid such unexpected situations as the 2011 Tohoku event when taking disaster prevention measures, the Japanese government and local administrations announced a maximum class model for earthquakes and tsunamis that is not based on paleoseismological evidence. Thus, paleoseismologists must both inductively study the reconstruction of evidence fromthe past and deductively evaluate the maximum class earthquake and tsunami.


Sign in / Sign up

Export Citation Format

Share Document