subduction zones
Recently Published Documents


TOTAL DOCUMENTS

1597
(FIVE YEARS 618)

H-INDEX

111
(FIVE YEARS 10)

2022 ◽  
Author(s):  
Huifang Xu ◽  
Kuang-Sheng Hong ◽  
Meiye Wu ◽  
Seungyeol Lee

ABSTRACT A high concentration of hydrogen gas occurs in fracture zones of active faults that are associated with historical earthquakes. To explain the described phenomenon, we propose the piezoelectrochemical (PZEC) effect as a mechanism for the direct conversion of mechanical energy to chemical energy. When applied to natural piezoelectric crystals including quartz and serpentine, hydrogen and oxygen are generated via direct water decomposition. Laboratory experiments show H2 gas is generated from strained piezoelectric material due to the extremely low solubility of H2, suggesting that the deformed or strained mineral surfaces can catalyze water decomposition. If the strain-induced H2 production is significant, hydrogen measurements at monitoring sites can offer information on deformation of rocks operating at depth prior to earthquakes. Oxygen can be measured in water due to its high solubility compared to hydrogen. Our experimental results demonstrate that dissolved oxygen generated from the PZEC effect can oxidize dissolved organic dye and ferrous iron in an aqueous Fe(II)–silicate metal complex. The hydrogen and oxygen formed through stoichiometric decomposition of water in the presence of strained or deformed minerals in fault zones (including subduction zones and transform faults) may be referred to as tectonic hydrogen and tectonic oxygen. Tectonic hydrogen could be a potential energy source for deep subsurface and glacier-bedrock interface microbial communities that rely on molecular hydrogen for metabolism. Tectonic oxygen may have been an important oxidizing agent when dissolved in water during times in early Earth history when atmospheric oxygen levels were extremely low. Reported “whiffs” of dissolved oxygen before the Great Oxidation Event might have been related to tectonic activity.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
P. Bouilhol ◽  
B. Debret ◽  
E. C. Inglis ◽  
M. Warembourg ◽  
T. Grocolas ◽  
...  

AbstractSerpentinites are an important sink for both inorganic and organic carbon, and their behavior during subduction is thought to play a fundamental role in the global cycling of carbon. Here we show that fluid-derived veins are preserved within the Zermatt-Saas ultra-high pressure serpentinites providing key evidence for carbonate mobility during serpentinite devolatilisation. We show through the O, C, and Sr isotope analyses of vein minerals and the host serpentinites that about 90% of the meta-serpentinite inorganic carbon is remobilized during slab devolatilisation. In contrast, graphite-like carbonaceous compounds remain trapped within the host rock as inclusions within metamorphic olivine while the bulk elemental and isotope composition of organic carbon remains relatively unchanged during the subduction process. This shows a decoupling behavior of carbon during serpentinite dehydration in subduction zones. This process will therefore facilitate the transfer of inorganic carbon to the mantle wedge and the preferential slab sequestration of organic carbon en route to the deep mantle.


Solid Earth ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 117-136
Author(s):  
Andrei Maksymowicz ◽  
Daniela Montecinos-Cuadros ◽  
Daniel Díaz ◽  
María José Segovia ◽  
Tomás Reyes

Abstract. The objective of this work is to analyse the density structure of the continental forearc in the northern segment of the 1960 Mw 9.6 Valdivia earthquake. Regional 2D and local 3D density models have been obtained from available gravity data in the area, complemented by new gravimetric stations. Models are constrained by independent geophysical and geological information and new TEM and MT soundings. The results show a segmentation of the continental wedge along and perpendicular to the margin, highlighting a high-density anomaly, below the onshore forearc basin, that limits the late Paleozoic–early Mesozoic metamorphic basement in the region where Chaitenia terrane has been proposed. A progressive landward shift of this anomaly correlates with the high slip patch of the giant 1960 Mw 9.6 Valdivia earthquake. Based on these results, we propose that the horizontal extension of the less rigid basement units conforming the marine wedge and Coastal Cordillera domain could modify the process of stress loading during the interseismic periods, and also that changes in position and extension of the late Paleozoic–early Mesozoic accretionary complex could be linked with the frictional properties of the interplate boundary. This analysis provides new evidence of the role of the overriding plate structure in the seismotectonic process in subduction zones.


2022 ◽  
Vol 9 ◽  
Author(s):  
Hung-Chun Chao ◽  
Chen-Feng You ◽  
In-Tian Lin ◽  
Hou-Chun Liu ◽  
Ling-Ho Chung ◽  
...  

Mud volcano is one of the most important conduits for deep seated materials to migrate upward in sedimentary basins, convergent margins, and subduction zones. Understanding their temporal and spatial characteristics and variations provides us the important information on fluid sources and chemical compositions at depth. Mud volcano Lei-Gong-Huo (MV LGH) is a unique mud volcano, which is located on the mélange formation lying on the andesitic volcanic arc. Fluids emitted from 46 mud pools in MV LGH in eastern Taiwan were sampled and their major trace constitutes as well as H, O, and Sr isotopes (87Sr/86Sr and δ88Sr) were measured. Major constitutes of the fluids are Cl−, Na, and Ca. Compared with seawater, LGH fluids have lower Cl−, δD, δ18O, Na/Cl, K/Cl, and Mg/Cl but higher Ca/Cl ratios, indicating water–rock interaction of igneous rock and the ancient seawater at the source region. This interpretation is further supported by Sr isotopes, which show low value of 87Sr/86Sr ratio down to 0.70708. The result of spatial distribution showing strong negative correlation between Na and Ca concentration as well as Ca and 87Sr/86Sr ratios indicates that two end-member mixing is the major chemical characteristic. The fluids interacting with igneous rock carry high Ca, high δ88Sr, low Na, and low 87Sr/86Sr ratio, while those interacting with sedimentary rock carry low Ca, low δ88Sr, high Na, and high 87Sr/86Sr ratio. The source from the igneous region dominates the eastern and southeastern parts of the mud pools while sedimentary source dominates the western and northwestern parts. Most mud pools show mixing behavior between the two sources. Some of the sedimentary-dominated mud pools reveal existence of residual ancient water as indicated by 87Sr/86Sr. The major factor to fractionate the stable Sr isotopes in LGH waters is the source lithology. In summary, fluids emitted by mud pools in LGH originate from two sources, which are water–rock interactions of igneous rock with the ancient seawater from the east and sedimentary rock from the west at depth, resulting from the complex geologic background of mélange formation.


Geosciences ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 29
Author(s):  
Pavel Kepezhinskas ◽  
Nikolai Berdnikov ◽  
Nikita Kepezhinskas ◽  
Natalia Konovalova

Adakites are Y- and Yb-depleted, SiO2- and Sr-enriched rocks with elevated Sr/Y and La/Yb ratios originally thought to represent partial melts of subducted metabasalt, based on their association with the subduction of young (<25 Ma) and hot oceanic crust. Later, adakites were found in arc segments associated with oblique, slow and flat subduction, arc–transform intersections, collision zones and post-collisional extensional environments. New models of adakite petrogenesis include the melting of thickened and delaminated mafic lower crust, basalt underplating of the continental crust and high-pressure fractionation (amphibole ± garnet) of mantle-derived, hydrous mafic melts. In some cases, adakites are associated with Nb-enriched (10 ppm < Nb < 20 ppm) and high-Nb (Nb > 20 ppm) arc basalts in ancient and modern subduction zones (HNBs). Two types of HNBs are recognized on the basis of their geochemistry. Type I HNBs (Kamchatka, Honduras) share N-MORB-like isotopic and OIB-like trace element characteristics and most probably originate from adakite-contaminated mantle sources. Type II HNBs (Sulu arc, Jamaica) display high-field strength element enrichments in respect to island-arc basalts coupled with enriched, OIB-like isotopic signatures, suggesting derivation from asthenospheric mantle sources in arcs. Adakites and, to a lesser extent, HNBs are associated with Cu–Au porphyry and epithermal deposits in Cenozoic magmatic arcs (Kamchatka, Phlippines, Indonesia, Andean margin) and Paleozoic-Mesozoic (Central Asian and Tethyan) collisional orogens. This association is believed to be not just temporal and structural but also genetic due to the hydrous (common presence of amphibole and biotite), highly oxidized (>ΔFMQ > +2) and S-rich (anhydrite in modern Pinatubo and El Chichon adakite eruptions) nature of adakite magmas. Cretaceous adakites from the Stanovoy Suture Zone in Far East Russia contain Cu–Ag–Au and Cu–Zn–Mo–Ag alloys, native Au and Pt, cupriferous Ag in association witn barite and Ag-chloride. Stanovoy adakites also have systematically higher Au contents in comparison with volcanic arc magmas, suggesting that ore-forming hydrothermal fluids responsible for Cu–Au(Mo–Ag) porphyry and epithermal mineralization in upper crustal environments could have been exsolved from metal-saturated, H2O–S–Cl-rich adakite magmas. The interaction between depleted mantle peridotites and metal-rich adakites appears to be capable of producing (under a certain set of conditions) fertile sources for HNB melts connected with some epithermal Au (Porgera) and porphyry Cu–Au–Mo (Tibet, Iran) mineralized systems in modern and ancient subduction zones.


2022 ◽  
Vol 9 ◽  
Author(s):  
G. F. Cooper ◽  
E. C. Inglis

Lavas produced at subduction zones represent the integration of both source heterogeneity and an array of crustal processes, such as: differentiation; mixing; homogenisation; assimilation. Therefore, unravelling the relative contribution of the sub-arc mantle source versus these crustal processes is difficult when using the amalgamated end products in isolation. In contrast, plutonic xenoliths provide a complementary record of the deeper roots of the magmatic plumbing system and provide a unique record of the true chemical diversity of arc crust. Here, we present the δ56Fe record from well characterised plutonic xenoliths from two distinct volcanic centres in the Lesser Antilles volcanic arc–the islands of Martinique and Statia. The primary objective of this study is to test if the Fe isotope systematics of arc lavas are controlled by sub-arc mantle inputs or during subsequent differentiation processes during a magma’s journey through volcanic arc crust. The Fe isotopic record, coupled to petrology, trace element chemistry and radiogenic isotopes of plutonic xenoliths from the two islands reveal a hidden crustal reservoir of heavy Fe that previously hasn’t been considered. Iron isotopes are decoupled from radiogenic isotopes, suggesting that crustal and/or sediment assimilation does not control the Fe systematics of arc magmas. In contrast to arc lavas, the cumulates from both islands record MORB-like δ56Fe values. In Statia, δ56Fe decreases with major and trace element indicators of differentiation (SiO2, Na2O + K2O, Eu/Eu*, Dy/Yb), consistent with fractionating mineral assemblages along a line of liquid descent. In Martinique, δ56Fe shows no clear relationship with most indicators of differentiation (apart from Dy/Yb), suggesting that the δ56Fe signature of the plutonic xenoliths has been overprinted by later stage processes, such as percolating reactive melts. Together, these data suggest that magmatic processes within the sub-arc crust overprint any source variation of the sub-arc mantle and that a light Fe source is not a requirement to produce the light Fe isotopic compositions recorded in volcanic arc lavas. Therefore, whenever possible, the complimentary plutonic record should be considered in isotopic studies to understand the relative control of the mantle source versus magmatic processes in the crust.


Nature ◽  
2022 ◽  
Vol 601 (7891) ◽  
pp. 69-73
Author(s):  
Artem Chanyshev ◽  
Takayuki Ishii ◽  
Dmitry Bondar ◽  
Shrikant Bhat ◽  
Eun Jeong Kim ◽  
...  

AbstractThe 660-kilometre seismic discontinuity is the boundary between the Earth’s lower mantle and transition zone and is commonly interpreted as being due to the dissociation of ringwoodite to bridgmanite plus ferropericlase (post-spinel transition)1–3. A distinct feature of the 660-kilometre discontinuity is its depression to 750 kilometres beneath subduction zones4–10. However, in situ X-ray diffraction studies using multi-anvil techniques have demonstrated negative but gentle Clapeyron slopes (that is,  the ratio between pressure and temperature changes) of the post-spinel transition that do not allow a significant depression11–13. On the other hand, conventional high-pressure experiments face difficulties in accurate phase identification due to inevitable pressure changes during heating and the persistent presence of metastable phases1,3. Here we determine the post-spinel and akimotoite–bridgmanite transition boundaries by multi-anvil experiments using in situ X-ray diffraction, with the boundaries strictly based on the definition of phase equilibrium. The post-spinel boundary has almost no temperature dependence, whereas the akimotoite–bridgmanite transition has a very steep negative boundary slope at temperatures lower than ambient mantle geotherms. The large depressions of the 660-kilometre discontinuity in cold subduction zones are thus interpreted as the akimotoite–bridgmanite transition. The steep negative boundary of the akimotoite–bridgmanite transition will cause slab stagnation (a stalling of the slab’s descent) due to significant upward buoyancy14,15.


2022 ◽  
Vol 368 ◽  
pp. 106479
Author(s):  
Thayla Almeida Teixeira Vieira ◽  
Renata da Silva Schmitt ◽  
Julio Cezar Mendes ◽  
Renato Moraes ◽  
George Luiz Luvizotto ◽  
...  
Keyword(s):  

2021 ◽  
Vol 10 (1) ◽  
pp. 40
Author(s):  
Zhigang Zeng ◽  
Xiaohui Li ◽  
Yuxiang Zhang ◽  
Haiyan Qi

Determining the influence of subduction input on back-arc basin magmatism is important for understanding material transfer and circulation in subduction zones. Although the mantle source of Okinawa Trough (OT) magmas is widely accepted to be modified by subducted components, the role of slab-derived fluids is poorly defined. Here, major element, trace element, and Li, O and Mg isotopic compositions of volcanic lavas from the middle OT (MOT) and southern OT (SOT) were analyzed. Compared with the MOT volcanic lavas, the T9-1 basaltic andesite from the SOT exhibited positive Pb anomalies, significantly lower Nd/Pb and Ce/Pb ratios, and higher Ba/La ratios, indicating that subducted sedimentary components affected SOT magma compositions. The δ7Li, δ18O, and δ26Mg values of the SOT basaltic andesite (−5.05‰ to 4.98‰, 4.83‰ to 5.80‰ and −0.16‰ to −0.09‰, respectively) differed from those of MOT volcanic lavas. Hence, the effect of the Philippine Sea Plate subduction component, (low δ7Li and δ18O and high δ26Mg) on magmas in the SOT was clearer than that in the MOT. This contrast likely appears because the amounts of fluids and/or melts derived from altered oceanic crust (AOC, lower δ18O) and/or subducted sediment (lower δ7Li, higher δ18O and δ26Mg) injected into magmas in the SOT are larger than those in the MOT and because the injection ratio between subducted AOC and sediment is always >1 in the OT. The distance between the subducting slab and overlying magma may play a significant role in controlling the differences in subduction components injected into magmas between the MOT and SOT.


Sign in / Sign up

Export Citation Format

Share Document