Structural health monitoring using empirical mode decomposition and the Hilbert phase

2006 ◽  
Vol 294 (1-2) ◽  
pp. 97-124 ◽  
Author(s):  
Darryll Pines ◽  
Liming Salvino
2009 ◽  
Vol 01 (04) ◽  
pp. 601-621 ◽  
Author(s):  
JUN CHEN

The installation of long-term structural health monitoring (SHM) system on super-tall buildings, long span bridges and large space structures has become a worldwide trend since last decade to monitor loading conditions, to detect damage, to assess structural safety and to guide maintenance during their service life. The core part of an SHM system is the function of data processing and structural parameter/damage identification that extracts useful information from huge amount of raw data and provides reliable knowledge for proper decision. Recently emerged data processing technique empirical mode decomposition (EMD) in conjunction with Hilbert transform (HT) provides a more better and powerful tool for SHM. This paper summarizes some research experience gained from application of EMD + HT in SHM with focuses on pre-processing raw data, structural parameter identification and damage detection. In particular, EMD is applied to determining time varying mean wind speed for wind data and to extract multipath effect from GPS data. For structural parameter identification, the EMD + HT approach is employed to identify natural frequencies and modal damping ratios of long span bridge during passage of strong typhoon and of structures with closely spaced modes of vibration. The results manifest the advantages of EMD + HT over traditional FFT-based methods in damping estimation. Furthermore, experimental investigation has been carried out to study the applicability of EMD for identifying structural damage caused by a sudden change of structural stiffness. It is concluded from all these investigations that EMD approach is a promising tool for structural health monitoring of large civil structures. Finally, some issues concerned for further practical application of EMD are highlighted and discussed based on these academic researches.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1825
Author(s):  
Marco Civera ◽  
Cecilia Surace

Signal Processing is, arguably, the fundamental enabling technology for vibration-based Structural Health Monitoring (SHM), which includes damage detection and more advanced tasks. However, the investigation of real-life vibration measurements is quite compelling. For a better understanding of its dynamic behaviour, a multi-degree-of-freedom system should be efficiently decomposed into its independent components. However, the target structure may be affected by (damage-related or not) nonlinearities, which appear as noise-like distortions in its vibrational response. This response can be nonstationary as well and thus requires a time-frequency analysis. Adaptive mode decomposition methods are the most apt strategy under these circumstances. Here, a shortlist of three well-established algorithms has been selected for an in-depth analysis. These signal decomposition approaches—namely, the Empirical Mode Decomposition (EMD), the Hilbert Vibration Decomposition (HVD), and the Variational Mode Decomposition (VMD)—are deemed to be the most representative ones because of their extensive use and favourable reception from the research community. The main aspects and properties of these data-adaptive methods, as well as their advantages, limitations, and drawbacks, are discussed and compared. Then, the potentialities of the three algorithms are assessed firstly on a numerical case study and then on a well-known experimental benchmark, including nonlinear cases and nonstationary signals.


Wave Motion ◽  
2014 ◽  
Vol 51 (2) ◽  
pp. 335-347 ◽  
Author(s):  
Ilwook Park ◽  
Yongju Jun ◽  
Usik Lee

Sign in / Sign up

Export Citation Format

Share Document