Modal analysis of a rotating pre-twisted beam axially loaded by an internally guided tendon

2021 ◽  
Vol 498 ◽  
pp. 115980
Author(s):  
Jun Wu ◽  
Branislav Titurus
2022 ◽  
Vol 960 (1) ◽  
pp. 012009
Author(s):  
Laurian Tomşeanu ◽  
Viorel Nicolae ◽  
Ionel Vieru ◽  
Dănuţ Marinescu

Abstract In this article it is presented a comparative analysis of natural mode frequencies for a non-powered rear axle used to fit mass production vehicle and for a similar rear axle derived from the first one to be used to fit a hybrid powered vehicle. The CAD model of the axle and the computed natural mode frequencies were realised using CATIA V5. For calculation, finit element method was used.


2021 ◽  
Vol 147 (3) ◽  
pp. 04020100
Author(s):  
Nasser Heydari ◽  
Panayiotis Diplas ◽  
J. Nathan Kutz ◽  
Soheil Sadeghi Eshkevari

2015 ◽  
Vol 39 (1) ◽  
pp. 145-149 ◽  
Author(s):  
Ewa B. Skrodzka ◽  
Bogumił B.J. Linde ◽  
Antoni Krupa

Abstract Experimental modal analysis of a violin with three different tensions of a bass bar has been performed. The bass bar tension is the only intentionally introduced modification of the instrument. The aim of the study was to find differences and similarities between top plate modal parameters determined by a bass bar perfectly fitting the shape of the top plate, the bass bar with a tension usually applied by luthiers (normal), and the tension higher than the normal value. In the modal analysis four signature modes are taken into account. Bass bar tension does not change the sequence of mode shapes. Changes in modal damping are insignificant. An increase in bass bar tension causes an increase in modal frequencies A0 and B(1+) and does not change the frequencies of modes CBR and B(1-).


Sign in / Sign up

Export Citation Format

Share Document