scholarly journals Co-transplantation of umbilical cord mesenchymal stem cells promotes the engraftment of umbilical cord blood stem cells in iron overload NOD/SCID mice

Author(s):  
Zhi Huang ◽  
Yuhua Xiao ◽  
Xiaomin Chen ◽  
Huiping Li ◽  
Jingyu Gao ◽  
...  
2020 ◽  
Author(s):  
Zhi Huang ◽  
Yuhua Xiao ◽  
Xiaomin Chen ◽  
Huiping Li ◽  
Jingyu Gao ◽  
...  

Abstract Background: Iron overload aggravates the difficulty of umbilical cord blood stem cell engraftment and reduces the survival of patients undergoing hematopoietic stem cells (HSC) transplantation. Mesenchymal stem cells (MSC) have been implicated in playing a significant role in HSC engraftment. This study aimed to determine the effect of intra-bone marrow (IBM) co-transplantation of umbilical cord blood mononuclear cells (UCB-MNC) and mesenchymal stem cells (UC-MSC) on the engraftment and hematopoietic recovery in an iron overload hematopoietic microenvironment. Methods: The iron overload model was established by dose-escalation intraperitoneal injection of iron dextran in NOD/SCID mice. Iron deposition in the bone marrow, heart, and liver was examined using H&E staining. Serum levels of ferritin and iron status in the liver were measured. The iron overload NOD/SCID mice were sublethally irradiated and divided into four groups for transplantation: (1) control group, (2) IBM MSC+ group: IBM injection of combined UCB-MNC/UC-MSC, (3) IBM group: IBM injection of only UCB-MNC, and (4) IV group: intravenous injection of UCB-MNC. Six weeks after transplantation, the human CD45 + cells in the bone marrow were analyzed by flow cytometry. The semi-quantitative analysis of vascular endothelial growth factor (VEGF-a), osteopontin (OPN), and stromal cell-derived factor-1a (SDF-1a) were examined by immunohistochemistry staining (IHC). Results: The survival rate and the percentages of human CD45 + cells in bone marrow were highest in the IBM MSC+ group with statistical significance. In addition, the levels of VEGF-a, OPN, and SDF-1a in bone marrow were all significantly higher in the IBM MSC+ group than the other groups. Conclusion: IBM co-transplantation of UC-MSC might improve the engraftment of UCB-MNC in iron overload NOD/SCID mice. The increased expression of VEGF-a, OPN, and SDF-1a in the bone marrow may be involved in improving the hematopoietic microenvironment and promoting the implantation of human umbilical cord blood stem cells in the bone marrow with iron overload.


2011 ◽  
Vol 26 (4) ◽  
pp. 267-273 ◽  
Author(s):  
Leandro Fadel ◽  
Brunno Rosa Viana ◽  
Matheus Levi Tajra Feitosa ◽  
Anna Caroline Mazeto Ercolin ◽  
Kelly Cristine Santos Roballo ◽  
...  

PURPOSE: To evaluate different protocols to isolate stem cells from ovine umbilical cord blood and adipose tissue. METHODS: There were used 5 samples of umbilical blood and 5 samples of perirenal adipose tissue from 10 female sheep. All the samples were obtained through surgery, to harvest aseptic samples. There were used 3 protocols for obtainment and culture of umbilical cord blood stem cells and 4 protocols for ovine adipose tissue stem cells. RESULTS: It was possible to observe only one successful protocol for the obtainment of umbilical cord blood stem cells. When analyzing the techniques used to obtain adipose tissue stem cells, only one of the methods was effective as well. Through colony forming unit assay, there were obtained 58 colonies of cells after seven days in culture. Flow citometry tests revealed the cells were positive to CD44 and exhibited negative reaction to CD38, CD45, CD41/61. These cells showed a growth curve with very well defined phases LOG, LAG and PLATEAU. This phases are typically seem in mesenchymal stem cells growth curves. CONCLUSIONS: The isolation and culture of mesenchymal stem cells from ovine umbilical cord blood are complex and request more detailed assays. Stem cells from fat tissue sheep showed mesenchymal characteristics, according to their cell growth curve, ability to origin colonies of fibroblastoid cells and positive reactivity with the antibody CD44 by flow citometry.


2017 ◽  
Vol 83 (1-2) ◽  
pp. 205-213 ◽  
Author(s):  
Priya F Maillacheruvu ◽  
Lauren M Engel ◽  
Isaiah T Crum ◽  
Devendra K Agrawal ◽  
Eric S Peeples

Sign in / Sign up

Export Citation Format

Share Document