human umbilical cord
Recently Published Documents


TOTAL DOCUMENTS

3309
(FIVE YEARS 977)

H-INDEX

98
(FIVE YEARS 15)

2022 ◽  
Vol 15 ◽  
Author(s):  
Xu Zhu ◽  
Zhen Wang ◽  
Yi Eve Sun ◽  
Yuchen Liu ◽  
Zhourui Wu ◽  
...  

Spinal cord injury (SCI) is caused by an external force, leading to severe dysfunction of the limbs below the injured segment. The inflammatory response plays a vital role in the prognosis of SCI. Human umbilical cord mesenchymal stem cell (hUCMSC) transplantation can promote repair of SCI by reducing the inflammatory response. We previously showed that hUCMSCs from 32 donors had different inhibitory abilities on BV2 cell proliferation. In this study, three experimental groups were established, and the mice were injected with different lines of hUCMSCs. Hind limb motor function, hematoxylin-eosin (H&E) staining, immunohistochemistry, Western blot (WB), qualitative real-time polymerase chain reaction (qRT-PCR), and RNA sequencing and correlation analysis were used to investigate the effects of hUCMSC transplantation on SCI mice and the underlying mechanisms. The results showed that the therapeutic effects of the three hUCMSC lines were positively correlated with their inhibitory abilities of BV2 cell proliferation rates in vitro. The MSC_A line had a better therapeutic effect on improving the hind limb motor function and greater effect on reducing the expression of glial fibrillary acidic protein (Gfap) and ionized calcium binding adaptor molecule 1 (Iba1) and increasing the expression of neuronal nuclei (NeuN). Differentially expressed genes including Zbtb16, Per3, and Hif3a were probably the key genes involved in the protective mechanism by MSC_A after nerve injury. qRT-PCR results further verified that Zbtb16, Per3, and Hif3a expressions reduced by SCI could be reversed by MSC_A application. These results suggest that the effect of hUCMSCs transplantation on acute SCI depends on their inhibitory abilities to inflammation reaction after nerve injury, which may help to shape future use of hUCMSCs combined with improving the effectiveness of clinical transformation.


Author(s):  
Barbara Fazekas ◽  
Senthilkumar Alagesan ◽  
Luke Watson ◽  
Olivia Ng ◽  
Callum M. Conroy ◽  
...  

Summary Mesenchymal stromal cells (MSCs) ameliorate pre-clinical sepsis and sepsis-associated acute kidney injury (SA-AKI) but clinical trials of single-dose MSCs have not indicated robust efficacy. This study investigated immunomodulatory effects of a novel MSC product (CD362-selected human umbilical cord-derived MSCs [hUC-MSCs]) in mouse endotoxemia and polymicrobial sepsis models. Initially, mice received intra-peritoneal (i.p.) lipopolysaccharide (LPS) followed by single i.p. doses of hUC-MSCs or vehicle. Next, mice underwent cecal ligation and puncture (CLP) followed by intravenous (i.v.) doses of hUC-MSCs at 4 h or 4 and 28 h. Analyses included serum/plasma assays of biochemical indices, inflammatory mediators and the AKI biomarker NGAL; multi-color flow cytometry of peritoneal macrophages (LPS) and intra-renal immune cell subpopulations (CLP) and histology/immunohistochemistry of kidney (CLP). At 72 h post-LPS injections, hUC-MSCs reduced serum inflammatory mediators and peritoneal macrophage M1/M2 ratio. Repeated, but not single, hUC-MSC doses administered at 48 h post-CLP resulted in lower serum concentrations of inflammatory mediators, lower plasma NGAL and reversal of sepsis-associated depletion of intra-renal T cell and myeloid cell subpopulations. Hierarchical clustering analysis of all 48-h serum/plasma analytes demonstrated partial co-clustering of repeated-dose hUC-MSC CLP animals with a Sham group but did not reveal a distinct signature of response to therapy. It was concluded that repeated doses of CD362-selected hUC-MSCs are required to modulate systemic and local immune/inflammatory events in polymicrobial sepsis and SA-AKI. Inter-individual variability and lack of effect of single dose MSC administration in the CLP model are consistent with observations to date from early-phase clinical trials. Graphical Abstract


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Hager Abouelnaga ◽  
Doaa El-Khateeb ◽  
Yasmine Moemen ◽  
Ashraf El-Fert ◽  
Mohamed Elgazzar ◽  
...  

Abstract Background Isolation of post-partum umbilical cord Wharton’s jelly stem cells has gained attention as an alternative source of the bone marrow. Because easy isolation, lack of ethical concerns, and the presence of both embryonic and adult stem cells have made them a valuable source for use in therapeutic applications and regenerative medicine. The study utilized a modified protocol using in-house human pooled cord blood serum for isolation and expansion of the mesenchymal stem cells obtained from the human umbilical cord Wharton’s jelly. Cell proliferation and population doubling time and tri-lineage differentiation were assessed, and the expressions of mesenchymal cell surface markers CD44, CD90, CD105, and CD34 were assessed by flow cytometry and RT-PCR. The genetic stability of the isolated cells was assessed by chromosomal karyotype. Results The isolated cells displayed fibroblastic-like morphology and tri-lineage differentiation into adipocyte, chondrocyte, and osteocyte. The isolated cells maintained the proliferative competence with a doubling time ranged from 38 to 42h and corresponded well with the standard positive and negative molecular markers (CD44+, CD90+, CD 105+, and CD34−). Cell senescence occurred at the later passage of the cells (P15) affecting, about 25% of the population. Metaphases spread of the cells showed normal diploid karyotypes, with typical chromosomal plates indicating genetic stability of the isolated cells. Conclusion The primary cultures exhibited success in isolating the umbilical cord Wharton’s jelly mesenchymal stem cells, which maintained their tri-lineage differentiation potential, phenotypes and karyotype characteristics on further passage and expansion.


2022 ◽  
Vol 15 ◽  
Author(s):  
Pasquale Romanelli ◽  
Lara Bieler ◽  
Patrick Heimel ◽  
Siniša Škokić ◽  
Dominika Jakubecova ◽  
...  

Local inflammation plays a pivotal role in the process of secondary damage after spinal cord injury. We recently reported that acute intravenous application of extracellular vesicles (EVs) secreted by human umbilical cord mesenchymal stromal cells dampens the induction of inflammatory processes following traumatic spinal cord injury. However, systemic application of EVs is associated with delayed delivery to the site of injury and the necessity for high doses to reach therapeutic levels locally. To resolve these two constraints, we injected EVs directly at the lesion site acutely after spinal cord injury. We report here that intralesional application of EVs resulted in a more robust improvement of motor recovery, assessed with the BBB score and sub-score, as compared to the intravenous delivery. Moreover, the intralesional application was more potent in reducing inflammation and scarring after spinal cord injury than intravenous administration. Hence, the development of EV-based therapy for spinal cord injury should aim at an early application of vesicles close to the lesion.


2022 ◽  
Vol 10 (A) ◽  
pp. 6-11
Author(s):  
Yan Wisnu Prajoko ◽  
Agung Putra ◽  
Bayu Tirta Dirja ◽  
Adi Muradi Muhar ◽  
Nur Dina Amalina

BACKGROUND: Mesenchymal stem cells (MSCs) have potent immunosuppressive properties to control systemic lupus erythematosus (SLE) disease by releasing several anti-inflammatory molecules, particularly indoleamine 2, 3-dioxygenase (IDO), and increasing regulatory T cells (Treg) to control innate and adaptive immune cells. However, how MSCs release IDO to modulate Treg in controlling B is poorly understood. Therefore, investigating IDO, Treg, and B cells following MSC administration in SLE is needed. AIM: This study aimed to investigate the ameliorating effects of MSCs in controlling B cells mediated by an increase of IDO-induced Treg in PBMC of SLE patients. METHODS: This study used a post-test control group design. MSCs were obtained from human umbilical cord blood and characterized according to their surface antigen expression and multilineage differentiation capacities. PBMCs isolated from SLE patients were divided into five groups: Sham (placebo group), control, and three treatment groups. The treatment groups were treated by coculturing MSCs to PBMCs with a ratio of 1:10, 1:25, and 1:40 for 72 h incubation. Treg and B-cell levels were analyzed by flow cytometry with cytometric bead array (CBA) while the IDO levels were determined by ELISA. RESULTS: This study showed that the percentages of B cells decreased significantly in groups treated by dose-dependent MSCs, particularly in T1 and T2 groups followed by increased Treg cell percentages. These findings were aligned with the significant increase of the IDO levels. CONCLUSIONS: MSCs regulated B cells through an increase of IDO-induced Treg in SLE patients’ PBMC.


Sign in / Sign up

Export Citation Format

Share Document