Construction of an excellent eco-friendly anti-corrosion system based on epoxy@Sm2O3-polydopamine biopolymer on the mild steel surface

2020 ◽  
Vol 113 ◽  
pp. 332-343
Author(s):  
Farshad Bahremand ◽  
Taghi Shahrabi ◽  
Bahram Ramezanzadeh
2021 ◽  
Vol 317 ◽  
pp. 498-505
Author(s):  
Sabrina M. Yahaya ◽  
Mohamad Kamal Harun ◽  
Ismaliza Ismail ◽  
Rosmamuhamadani Ramli

In this study, poly(m-aminophenol) (PMAP) coating was electrochemically synthesized by cyclic voltammetry (CV) on mild steel surface to investigate the effects of its barrier protection within the scope of its electrochemical impedance towards further oxidation of the mild steel substrates. The developed PMAP coating were characterized by Fourier Transform Infrared (FTIR) spectroscopy and Field Emission Scanning Electron Microscopy (FESEM). The barrier resistance ability of PMAP coating towards corrosion of mild steel was determined in 0.5 M aqueous sodium chloride solution (NaCl) at various immersion times by the electrochemical impedance spectroscopy (EIS). The barrier properties were interpreted through impedance measurement using Nyquist and Bode plots. Equivalent electrical circuit models derived from the plots were employed to describe the coating barrier behaviour and performance. Data obtained showed that, the oxidation peak of PMAP coating were observed at potential +1.0 V (Ag/AgCl). The micrograph of FESEM indicates the formation of a dense and continous PMAP coatings. In FTIR analyses, the presence of peak around 1082 cm-1 ascribed to C–O–C etheric linkage which supported the formation of electro polymerized PMAP coating on mild steel surface. EIS measurement revealed that, PMAP coatings experienced a significant drop in total impedance values with time followed by the development of an electrochemical reactions on coating/metal interface, which indicates the gradual degradation of the barrier resistance ability of the PMAP coatings.


2015 ◽  
Vol 44 (6) ◽  
pp. 371-378 ◽  
Author(s):  
Y. Sangeetha ◽  
S. Meenakshi ◽  
C. Sairam Sundaram

Purpose – The purpose of this paper is to develop an eco-friendly corrosion inhibitor for mild steel in 1 M HCl. Design/methodology/approach – A pharmaceutical drug acetyl G was investigated for its corrosion inhibition efficiency using weight loss method, potentiodynamic polarisation and electrochemical impedance spectroscopy. Findings – The inhibition efficiency increased with increase in inhibitor concentration. Results from polarisation studies revealed mixed type of inhibition. Impedance studies, scanning electron microscopy and Fourier transform spectroscopy confirm the adsorption of inhibitor on the mild steel surface. Research limitations/implications – The drug acetyl G has sulphur and nitrogen atoms which effectively block the corrosion of mild steel and is non-toxic and has good inhibition efficiency. Practical implications – This method provides an excellent, non-toxic and cost-effective material as a corrosion inhibitor for mild steel in acid medium. Originality/value – Application of this drug as a corrosion inhibitor has not been reported yet in the literature. Replacing the organic inhibitors, this green inhibitor shows excellent inhibition efficiency. This is adsorbed excellently on the mild steel surface due to the presence of long chain and hetero atoms. Thus, the drug retards the corrosion reaction.


Author(s):  
Khaoula Alaoui ◽  
Ashraf Abousalem ◽  
Burak Tüzün ◽  
Younes El Kacimi

This chapter describes some recent good works in the field of metallic corrosion monitoring using Triazepine carboxylate inhibitors in hydrochloric acidic media. The different sections of this chapter cover electrochemical measurements and theoretical investigations. This review reveals Triazepine carboxylate compounds as very good inhibitors for mild steel in hydrochloric medium. The inhibition action of all Triazepine carboxylates compound studied was performed via adsorption on mild steel surface. Comparison between several adsorption isotherms reveal that the adsorption was spontaneous and followed Langmuir isotherm in HCl for all inhibitors and all studied temperatures. Kinetic and thermodynamic parameters for all inhibitors led to suggest the occurrence of chemical mechanism and also the spontaneity of the adsorption process on mild steel surface. The corrosion inhibition mechanism was also compared and discussed with the light of some Triazepine carboxyale compounds constituents.


2018 ◽  
Vol 7 (3.11) ◽  
pp. 30
Author(s):  
Zailelah Zainoldin ◽  
Hadariah Bahron ◽  
Mohamad Kamal Harun ◽  
Syaidah Athirah Dzolin

Electro-oxidation of 4-hydroxybenzalaniline in alkaline solution on mild steel surface was successfully carried out using cyclic voltammetric technique. Results demonstrated that brownish colour appeared on the mild steel surface after the cycle of voltammetric study. The presence of film was confirmed by the EIS measurement whereas the Nyquist plots obtained from EIS measurements were fitted with suitable electrical equivalent circuit. The coated mild steel exhibit better polarization resistance than uncoated mild steel.  


Sign in / Sign up

Export Citation Format

Share Document