Visual object tracking using sparse context-aware spatio-temporal correlation filter

Author(s):  
Dinesh Elayaperumal ◽  
Young Hoon Joo
Electronics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 43
Author(s):  
Khizer Mehmood ◽  
Abdul Jalil ◽  
Ahmad Ali ◽  
Baber Khan ◽  
Maria Murad ◽  
...  

Object tracking is still an intriguing task as the target undergoes significant appearance changes due to illumination, fast motion, occlusion and shape deformation. Background clutter and numerous other environmental factors are other major constraints which remain a riveting challenge to develop a robust and effective tracking algorithm. In the present study, an adaptive Spatio-temporal context (STC)-based algorithm for online tracking is proposed by combining the context-aware formulation, Kalman filter, and adaptive model learning rate. For the enhancement of seminal STC-based tracking performance, different contributions were made in the proposed study. Firstly, a context-aware formulation was incorporated in the STC framework to make it computationally less expensive while achieving better performance. Afterwards, accurate tracking was made by employing the Kalman filter when the target undergoes occlusion. Finally, an adaptive update scheme was incorporated in the model to make it more robust by coping with the changes of the environment. The state of an object in the tracking process depends on the maximum value of the response map between consecutive frames. Then, Kalman filter prediction can be updated as an object position in the next frame. The average difference between consecutive frames is used to update the target model adaptively. Experimental results on image sequences taken from Template Color (TC)-128, OTB2013, and OTB2015 datasets indicate that the proposed algorithm performs better than various algorithms, both qualitatively and quantitatively.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2841
Author(s):  
Khizer Mehmood ◽  
Abdul Jalil ◽  
Ahmad Ali ◽  
Baber Khan ◽  
Maria Murad ◽  
...  

Despite eminent progress in recent years, various challenges associated with object tracking algorithms such as scale variations, partial or full occlusions, background clutters, illumination variations are still required to be resolved with improved estimation for real-time applications. This paper proposes a robust and fast algorithm for object tracking based on spatio-temporal context (STC). A pyramid representation-based scale correlation filter is incorporated to overcome the STC’s inability on the rapid change of scale of target. It learns appearance induced by variations in the target scale sampled at a different set of scales. During occlusion, most correlation filter trackers start drifting due to the wrong update of samples. To prevent the target model from drift, an occlusion detection and handling mechanism are incorporated. Occlusion is detected from the peak correlation score of the response map. It continuously predicts target location during occlusion and passes it to the STC tracking model. After the successful detection of occlusion, an extended Kalman filter is used for occlusion handling. This decreases the chance of tracking failure as the Kalman filter continuously updates itself and the tracking model. Further improvement to the model is provided by fusion with average peak to correlation energy (APCE) criteria, which automatically update the target model to deal with environmental changes. Extensive calculations on the benchmark datasets indicate the efficacy of the proposed tracking method with state of the art in terms of performance analysis.


2021 ◽  
pp. 85-127
Author(s):  
Weiwei Xing ◽  
Weibin Liu ◽  
Jun Wang ◽  
Shunli Zhang ◽  
Lihui Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document