background clutter
Recently Published Documents


TOTAL DOCUMENTS

168
(FIVE YEARS 46)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Shaolong Chen ◽  
Changzhen Qiu ◽  
Yurong Huang ◽  
Zhiyong Zhang

Abstract In the visual object tracking, the tracking algorithm based on discriminative model prediction have shown favorable performance in recent years. Probabilistic discriminative model prediction (PrDiMP) is a typical tracker based on discriminative model prediction. The PrDiMP evaluates tracking results through output of the tracker to guide online update of the model. However, the tracker output is not always reliable, especially in the case of fast motion, occlusion or background clutter. Simply using the output of the tracker to guide the model update can easily lead to drift. In this paper, we present a robust model update strategy which can effectively integrate maximum response, multi-peaks and detector cues to guide model update of PrDiMP. Furthermore, we have analyzed the impact of different model update strategies on the performance of PrDiMP. Extensive experiments and comparisons with state-of-the-art trackers on the four benchmarks of VOT2018, VOT2019, NFS and OTB100 have proved the effectiveness and advancement of our algorithm.


2021 ◽  
Vol 13 (23) ◽  
pp. 4942
Author(s):  
Bo Yan ◽  
Hua Zhang ◽  
Luping Xu ◽  
Yu Chen ◽  
Hongmin Lu

A 4D TBD approach is developed here for closely weak extended target tracking and overcoming heterogeneous clutter background and various clutter regions. The 4D measurements in this work are the points containing three positional information in spatial space and corresponding timestamp. The proposed method is mainly designed to address two issues. The first one is the dilemma between the weak target detection and difficult computation originating from the high dimensions of measurement. The second issue is the suppression of inhomogeneous background clutter and various clutter regions. The extension experiment using synthetic data showcases that no false alarm track would be built in the clutter regions, and the detection rate of close targets exceeds 94%. The experiments using real 3D radar also prove that the method works well in tracking closely maneuvering extended targets even if a clutter region exists.


2021 ◽  
Vol 2137 (1) ◽  
pp. 012022
Author(s):  
Da Lu ◽  
Jia Liu ◽  
Helong Li

Abstract Recognizing irregular text in real industrial scenes is a challenging task due to the background clutter, low resolutions or distortions. In this work, an attention-based text detection and recognition method for terminals of current transformer’s secondary circuit is proposed. It consists of three major components: pre-processing, text detection and text recognition. In text recognition module, a novel spatial temporal embedding is designed to better utilize the positional information. During training, the proposed framework only requires sequence-level annotations, instead of extra fine-grained character-level boxes or segmentation masks as in previous work. Despite its simplicity, the proposed method achieves good performance on the dataset collected in actual working scene.


Author(s):  
Junyi Wu ◽  
Yan Huang ◽  
Qiang Wu ◽  
Zhipeng Gao ◽  
Jianqiang Zhao ◽  
...  

The task of person re-identification (re-ID) is to find the same pedestrian across non-overlapping camera views. Generally, the performance of person re-ID can be affected by background clutter. However, existing segmentation algorithms cannot obtain perfect foreground masks to cover the background information clearly. In addition, if the background is completely removed, some discriminative ID-related cues (i.e., backpack or companion) may be lost. In this article, we design a dual-stream network consisting of a Provider Stream (P-Stream) and a Receiver Stream (R-Stream). The R-Stream performs an a priori optimization operation on foreground information. The P-Stream acts as a pusher to guide the R-Stream to concentrate on foreground information and some useful ID-related cues in the background. The proposed dual-stream network can make full use of the a priori optimization and guided-learning strategy to learn encouraging foreground information and some useful ID-related information in the background. Our method achieves Rank-1 accuracy of 95.4% on Market-1501, 89.0% on DukeMTMC-reID, 78.9% on CUHK03 (labeled), and 75.4% on CUHK03 (detected), outperforming state-of-the-art methods.


2021 ◽  
Vol 13 (11) ◽  
pp. 290
Author(s):  
Jing Mei ◽  
Huahu Xu ◽  
Yang Li ◽  
Minjie Bian ◽  
Yuzhe Huang

RGB–IR cross modality person re-identification (RGB–IR Re-ID) is an important task for video surveillance in poorly illuminated or dark environments. In addition to the common challenge of Re-ID, the large cross-modality variations between RGB and IR images must be considered. The existing RGB–IR Re-ID methods use different network structures to learn the global shared features associated with multi-modalities. However, most global shared feature learning methods are sensitive to background clutter, and contextual feature relationships are not considered among the mined features. To solve these problems, this paper proposes a dual-path attention network architecture MFCNet. SGA (Spatial-Global Attention) module embedded in MFCNet includes spatial attention and global attention branches to mine discriminative features. First, the SGA module proposed in this paper focuses on the key parts of the input image to obtain robust features. Next, the module mines the contextual relationships among features to obtain discriminative features and improve network performance. Finally, extensive experiments demonstrate that the performance of the network architecture proposed in this paper is better than that of state-of-the-art methods under various settings. In the all-search mode of the SYSU and RegDB data sets, the rank-1 accuracy reaches 51.64% and 69.76%, respectively.


2021 ◽  
Vol 2107 (1) ◽  
pp. 012007
Author(s):  
Mohd Fauzi Abu Hassan ◽  
Azurahisham Sah Pri ◽  
Zakiah Ahmad ◽  
Tengku Mohd Azahar Tuan Dir

Abstract This paper investigated single target tracking of arbitrary objects. Tracking is a difficult problem due to a variety of challenges such as scale variation, motion, background clutter, illumination etc. To achieve better tracking performance under these severe conditions, this paper proposed covariance descriptor based on multi-layer instance search region. Our results show that the proposed approach significantly improves the performance in term of centre location error (in pixels) compared to covariance descriptor with using a fixed bounding box. From this work, it is believed that we have constructed a great solution in choosing best layer for this descriptor. This will be addressed in the next future work such as consider target motion during tracking.


Author(s):  
Kathryne M Allen ◽  
Angeles Salles ◽  
Sanwook Park ◽  
Mounya Elhilali ◽  
Cynthia F. Moss

The discrimination of complex sounds is a fundamental function of the auditory system. This operation must be robust in the presence of noise and acoustic clutter. Echolocating bats are auditory specialists that discriminate sonar objects in acoustically complex environments. Bats produce brief signals, interrupted by periods of silence, rendering echo snapshots of sonar objects. Sonar object discrimination requires that bats process spatially and temporally overlapping echoes to make split-second decisions. The mechanisms that enable this discrimination are not well understood, particularly in complex environments. We explored the neural underpinnings of sonar object discrimination in the presence of acoustic scattering caused by physical clutter. We performed electrophysiological recordings in the inferior colliculus of awake big brown bats, to broadcasts of pre-recorded echoes from physical objects. We acquired single unit responses to echoes and discovered a sub-population of IC neurons that encode acoustic features that can be used to discriminate between sonar objects. We further investigated the effects of environmental clutter on this population's encoding of acoustic features. We discovered that the effect of background clutter on sonar object discrimination is highly variable and depends on object properties and target-clutter spatio-temporal separation. In many conditions, clutter impaired discrimination of sonar objects. However, in some instances clutter enhanced acoustic features of echo returns, enabling higher levels of discrimination. This finding suggests that environmental clutter may augment acoustic cues used for sonar target discrimination and provides further evidence in a growing body of literature that noise is not universally detrimental to sensory encoding.


Author(s):  
Libin Xu ◽  
Pyoungwon Kim ◽  
Mengjie Wang ◽  
Jinfeng Pan ◽  
Xiaomin Yang ◽  
...  

AbstractThe discriminative correlation filter (DCF)-based tracking methods have achieved remarkable performance in visual tracking. However, the existing DCF paradigm still suffers from dilemmas such as boundary effect, filter degradation, and aberrance. To address these problems, we propose a spatio-temporal joint aberrance suppressed regularization (STAR) correlation filter tracker under a unified framework of response map. Specifically, a dynamic spatio-temporal regularizer is introduced into the DCF to alleviate the boundary effect and filter degradation, simultaneously. Meanwhile, an aberrance suppressed regularizer is exploited to reduce the interference of background clutter. The proposed STAR model is effectively optimized using the alternating direction method of multipliers (ADMM). Finally, comprehensive experiments on TC128, OTB2013, OTB2015 and UAV123 benchmarks demonstrate that the STAR tracker achieves compelling performance compared with the state-of-the-art (SOTA) trackers.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Awais Khan ◽  
Ali Javed ◽  
Aun Irtaza ◽  
Muhammad Tariq Mahmood

Blur detection (BD) is an important and challenging task in digital imaging and computer vision applications. Accurate segmentation of homogenous smooth and blur regions, low-contrast focal regions, missing patches, and background clutter, without having any prior information about the blur, are the fundamental challenges of BD. Previous work on BD has emphasized much effort on designing local sharpness metric maps from the images. However, the smooth/blurred regions having the same patterns as sharp regions make them problematic. This paper presents a robust novel method to extract the local metric map for blurred and nonblurred regions based on multisequential deviated patterns (MSDPs). Unlike the preceding, MSDP extracts the local sharpness metric map on the images at multiple scales using different adaptive thresholds to overcome the problems of smooth/blur regions and missing patches. By using the integral values of the image along with image masking and Otsu thresholding, highly accurate segmented regions of the images are acquired. We argue/hypothesize that the local sharpness map extraction by using direct integral information of the image is highly affected by the threshold selected for distinction between the regions, whereas MSDP feature extraction overcomes the limitations substantially by using automatic threshold computation over multiple scales of the images. Moreover, the proposed method extracts the relatively accurate sharp regions from the high-dense blur and noisy images. Experiments are conducted on two commonly used SHI and DUT datasets for blur and sharp region classifications. The results indicate the effectiveness of the proposed method in terms of sharp segmented regions. Experimental results of qualitative and quantitative comparisons of the proposed method with ten comparative methods demonstrate the superiority of our method. Moreover, the proposed method is also computationally efficient over state-of-the-art methods.


Sign in / Sign up

Export Citation Format

Share Document