scholarly journals Volume growth of abdominal aortic aneurysms correlates with baseline volume and increasing finite element analysis-derived rupture risk

2016 ◽  
Vol 63 (6) ◽  
pp. 1434-1442.e3 ◽  
Author(s):  
Moritz Lindquist Liljeqvist ◽  
Rebecka Hultgren ◽  
T. Christian Gasser ◽  
Joy Roy
2014 ◽  
Vol 21 (4) ◽  
pp. 556-564 ◽  
Author(s):  
Philipp Erhart ◽  
Caspar Grond-Ginsbach ◽  
Maani Hakimi ◽  
Felix Lasitschka ◽  
Susanne Dihlmann ◽  
...  

2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Joseph R. Leach ◽  
Evan Kao ◽  
Chengcheng Zhu ◽  
David Saloner ◽  
Michael D. Hope

Intraluminal thrombus (ILT) is present in the majority of abdominal aortic aneurysms (AAA) of a size warranting consideration for surgical or endovascular intervention. The rupture risk of AAAs is thought to be related to the balance of vessel wall strength and the mechanical stress caused by systemic blood pressure. Previous finite element analyses of AAAs have shown that ILT can reduce and homogenize aneurysm wall stress. These works have largely considered ILT to be homogeneous in mechanical character or have idealized a stiffness distribution through the thrombus thickness. In this work, we use magnetic resonance imaging (MRI) to delineate the heterogeneous composition of ILT in 7 AAAs and perform patient–specific finite element analysis under multiple conditions of ILT layer stiffness disparity. We find that explicit incorporation of ILT heterogeneity in the finite element analysis is unlikely to substantially alter major stress analysis predictions regarding aneurysm rupture risk in comparison to models assuming a homogenous thrombus, provided that the maximal ILT stiffness is the same between models. Our results also show that under a homogeneous ILT assumption, the choice of ILT stiffness from values common in the literature can result in significantly larger variations in stress predictions compared to the effects of thrombus heterogeneity.


Sign in / Sign up

Export Citation Format

Share Document