scholarly journals A linear height-resolving wind field model for tropical cyclone boundary layer

2017 ◽  
Vol 171 ◽  
pp. 248-260 ◽  
Author(s):  
Reda Snaiki ◽  
Teng Wu

Abstract The evolution of the tropical cyclone boundary layer (TCBL) wind field before landfall is examined in this study. As noted in previous studies, a typical TCBL wind structure over the ocean features a supergradient boundary layer jet to the left of motion and Earth-relative maximum winds to the right. However, the detailed response of the wind field to frictional convergence at the coastline is less well known. Here, idealized numerical simulations reveal an increase in the offshore radial and vertical velocities beginning once the TC is roughly 200 km offshore. This increase in the radial velocity is attributed to the sudden decrease in frictional stress once the highly agradient flow crosses the offshore coastline. Enhanced advection of angular momentum by the secondary circulation forces a strengthening of the supergradient jet near the top of the TCBL. Sensitivity experiments reveal that the coastal roughness discontinuity dominates the friction asymmetry due to motion. Additionally, increasing the inland roughness through increasing the aerodynamic roughness length enhances the observed asymmetries. Lastly, a brief analysis of in-situ surface wind data collected during the landfall of three Gulf of Mexico hurricanes is provided and compared to the idealized simulations. Despite the limited in-situ data, the observations generally support the simulations. The results here imply that assumptions about the TCBL wind field based on observations from over horizontally-homogeneous surface types - which have been well-documented by previous studies - are inappropriate for use near strong frictional heterogeneity.


2009 ◽  
Vol 48 (2) ◽  
pp. 381-405 ◽  
Author(s):  
Peter J. Vickery ◽  
Dhiraj Wadhera ◽  
Mark D. Powell ◽  
Yingzhao Chen

Abstract This article examines the radial dependence of the height of the maximum wind speed in a hurricane, which is found to lower with increasing inertial stability (which in turn depends on increasing wind speed and decreasing radius) near the eyewall. The leveling off, or limiting value, of the marine drag coefficient in high winds is also examined. The drag coefficient, given similar wind speeds, is smaller for smaller-radii storms; enhanced sea spray by short or breaking waves is speculated as a cause. A fitting technique of dropsonde wind profiles is used to model the shape of the vertical profile of mean horizontal wind speeds in the hurricane boundary layer, using only the magnitude and radius of the “gradient” wind. The method slightly underestimates the surface winds in small but intense storms, but errors are less than 5% near the surface. The fit is then applied to a slab layer hurricane wind field model, and combined with a boundary layer transition model to estimate surface winds over both marine and land surfaces.


2014 ◽  
Vol 28 (1) ◽  
pp. 127-138 ◽  
Author(s):  
Ninghao Cai ◽  
Xin Xu ◽  
Lili Song ◽  
Lina Bai ◽  
Jie Ming ◽  
...  

2006 ◽  
Vol 63 (9) ◽  
pp. 2169-2193 ◽  
Author(s):  
Jeffrey D. Kepert

Abstract The GPS dropsonde allows observations at unprecedentedly high horizontal and vertical resolution, and of very high accuracy, within the tropical cyclone boundary layer. These data are used to document the boundary layer wind field of the core of Hurricane Georges (1998) when it was close to its maximum intensity. The spatial variability of the boundary layer wind structure is found to agree very well with the theoretical predictions in the works of Kepert and Wang. In particular, the ratio of the near-surface wind speed to that above the boundary layer is found to increase inward toward the radius of maximum winds and to be larger to the left of the track than to the right, while the low-level wind maximum is both more marked and at lower altitude on the left of the storm track than on the right. However, the expected supergradient flow in the upper boundary layer is not found, with the winds being diagnosed as close to gradient balance. The tropical cyclone boundary layer model of Kepert and Wang is used to simulate the boundary layer flow in Hurricane Georges. The simulated wind profiles are in good agreement with the observations, and the asymmetries are well captured. In addition, it is found that the modeled flow in the upper boundary layer at the eyewall is barely supergradient, in contrast to previously studied cases. It is argued that this lack of supergradient flow is a consequence of the particular radial structure in Georges, which had a comparatively slow decrease of wind speed with radius outside the eyewall. This radial profile leads to a relatively weak gradient of inertial stability near the eyewall and a strong gradient at larger radii, and hence the tropical cyclone boundary layer dynamics described by Kepert and Wang can produce only marginally supergradient flow near the radius of maximum winds. The lack of supergradient flow, diagnosed from the observational analysis, is thus attributed to the large-scale structure of this particular storm. A companion paper presents a similar analysis for Hurricane Mitch (1998), with contrasting results.


2013 ◽  
Vol 79 ◽  
pp. 29-35 ◽  
Author(s):  
Ivan V. Kovalets ◽  
Vladimir Y. Korolevych ◽  
Alexander V. Khalchenkov ◽  
Ievgen A. Ievdin ◽  
Mark J. Zheleznyak ◽  
...  

Author(s):  
Rong Fei ◽  
Yuqing Wang ◽  
Yuanlong Li

AbstractThe existence of supergradient wind in the interior of the boundary layer is a distinct feature of a tropical cyclone (TC). Although the vertical advection is shown to enhance supergradient wind in TC boundary layer (TCBL), how and to what extent the strength and structure of supergradient wind are modulated by vertical advection are not well understood. In this study, both a TCBL model and an axisymmetric full-physics model are used to quantify the contribution of vertical advection process to the strength and vertical structure of supergradient wind in TCBL. Results from the TCBL model show that the removal of vertical advection of radial wind reduces both the strength and height of supergradient wind by slightly more than 50%. The removal of vertical advection of agradient wind reduces the height of the supergradient wind core by ~30% but increases the strength of supergradient wind by ~10%. Results from the full-physics model show that the removal of vertical advection of radial wind or agradient wind reduces both the strength and height of supergradient wind but the removal of that of radial wind produces a more substantial reduction (52%) than the removal of that of agradient wind (35%). However, both the intensification rate and final intensity of the simulated TCs in terms of maximum 10-m wind speed show little differences in experiments with and without the vertical advection of radial or agradient wind, suggesting that supergradient wind contributes little to either the intensification rate or the steady-state intensity of the simulated TC.


Sign in / Sign up

Export Citation Format

Share Document