atmospheric dispersion
Recently Published Documents


TOTAL DOCUMENTS

1155
(FIVE YEARS 201)

H-INDEX

40
(FIVE YEARS 5)

2022 ◽  
Vol 354 ◽  
pp. 00009
Author(s):  
Vlad Mihai Pasculescu ◽  
Emilian Ghicioi ◽  
Ligia Ioana Tuhut ◽  
Adrian Bogdan Simon-Marinica ◽  
Dragos Pasculescu

One of the most important tools for improving the OHS level in process industries is represented by risk analysis and assessment. Within industrial units in operation or in the ones which find themselves in the design phase, risk assessment is carried out for determining the hazards which may occur and which may lead to unwanted events, such as hazardous toxic releases, fires and explosions. Accidental releases of toxic/flammable/explosive substances may have serious consequences on workers or on the neighbouring population, therefore the need to establish safety areas based on best practices in the field and on scientific grounds is fully justified. Pressure tanks containing hazardous materials represent one of the most relevant industrial facilities within process plants, being most of the time exposed to hazardous toxic releases, fire and explosion risks. The current study aims to evaluate the consequences and discuss the safety distances required in case of an accidental release of a hazardous material from a tank located within a process plant, using process analysis software tools. Accident scenarios are modelled for comparison purposes with consequence modelling software widely used in safety engineering.


2021 ◽  
Author(s):  
Derek Miller ◽  
Elena Vyazmina ◽  
Amy Shen ◽  
Elizabeth Lutostansky

Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1686
Author(s):  
Iasonas Stavroulas ◽  
Georgios Grivas ◽  
Eleni Liakakou ◽  
Panayiotis Kalkavouras ◽  
Aikaterini Bougiatioti ◽  
...  

Port cities are affected by a wide array of emissions, including those from the shipping, road transport, and residential sectors; therefore, the characterization and apportionment of such sources in a high temporal resolution is crucial. This study presents measurements of fine aerosol chemical composition in Piraeus, one of the largest European ports, during two monthly periods (winter vs. summer) in 2018–2019, using online instrumentation (Aerosol Chemical Speciation Monitor—ACSM, 7-λ aethalometer). PMF source apportionment was performed on the ACSM mass spectra to quantify organic aerosol (OA) components, while equivalent black carbon (BC) was decomposed to its fossil fuel combustion and biomass burning (BB) fractions. The combined traffic, shipping and, especially, residential emissions led to considerably elevated submicron aerosol levels (22.8 μg m−3) in winter, which frequently became episodic late at night under stagnant conditions. Carbonaceous compounds comprised the major portion of this submicron aerosol in winter, with mean OA and BC contributions of 61% (13.9 μg m−3) and 16% (3.7 μg m−3), respectively. The contribution of BB to BC concentrations was considerable and spatially uniform. OA related to BB emissions (fresh and processed) and hydrocarbon-like OA (from vehicular traffic and port-related fossil fuel emissions including shipping) accounted for 37% and 30% of OA, respectively. In summer, the average PM1 concentration was significantly lower (14.8 μg m−3) and less variable, especially for the components associated with secondary aerosols (such as OA and sulfate). The effect of the port sector was evident in summer and maintained BC concentrations at high levels (2.8 μg m−3), despite the absence of BB and improved atmospheric dispersion. Oxygenated components yielded over 70% of OA in summer, with the more oxidized secondary component of regional origin being dominant (41%) despite the intensity of local sources, in the Piraeus environment. In general, with respect to local sources that can be the target of mitigation policies, this work highlights the importance of port-related activities but also reveals the extensive wintertime impact of residential wood burning. While a separation of the BB source is feasible, more research is needed on how to disentangle the short-term effects of different fossil-fuel combustion sources.


Author(s):  
Cinara Ewerling da Rosa ◽  
Michel Stefanello ◽  
Silvana Maldaner ◽  
Douglas Stefanello Facco ◽  
Débora Regina Roberti ◽  
...  

Considering the influence of the downslope windstorm called “Vento Norte” (VNOR; Portuguese for “North Wind”) in planetary boundary layer turbulent features, a new set of turbulent parameterizations, which are to be used in atmospheric dispersion models, has been derived. Taylor’s statistical diffusion theory, velocity spectra obtained at four levels (3, 6, 14, and 30 m) in a micrometeorological tower, and the energy-containing eddy scales are used to calculate neutral planetary boundary layer turbulent parameters. Vertical profile formulations of the wind velocity variances and Lagrangian decorrelation time scales are proposed, and to validate this new parameterization, it is applied in a Lagrangian Stochastic Particle Dispersion Model to simulate the Prairie Grass concentration experiments. The simulated concentration results were shown to agree with those observed.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1573
Author(s):  
Rachel Pelley ◽  
David Thomson ◽  
Helen Webster ◽  
Michael Cooke ◽  
Alistair Manning ◽  
...  

We present a Bayesian inversion method for estimating volcanic ash emissions using satellite retrievals of ash column load and an atmospheric dispersion model. An a priori description of the emissions is used based on observations of the rise height of the volcanic plume and a stochastic model of the possible emissions. Satellite data are processed to give column loads where ash is detected and to give information on where we have high confidence that there is negligible ash. An atmospheric dispersion model is used to relate emissions and column loads. Gaussian distributions are assumed for the a priori emissions and for the errors in the satellite retrievals. The optimal emissions estimate is obtained by finding the peak of the a posteriori probability density under the constraint that the emissions are non-negative. We apply this inversion method within a framework designed for use during an eruption with the emission estimates (for any given emission time) being revised over time as more information becomes available. We demonstrate the approach for the 2010 Eyjafjallajökull and 2011 Grímsvötn eruptions. We apply the approach in two ways, using only the ash retrievals and using both the ash and clear sky retrievals. For Eyjafjallajökull we have compared with an independent dataset not used in the inversion and have found that the inversion-derived emissions lead to improved predictions.


2021 ◽  
Author(s):  
Jin Xu ◽  
Songfeng KOU ◽  
Zhongyu YUE ◽  
Bozhong GU ◽  
Shihai YANG

2021 ◽  
Vol 12 ◽  
Author(s):  
Aida Sarmiento-Vizcaíno ◽  
Jesús Martín ◽  
Fernando Reyes ◽  
Luis A. García ◽  
Gloria Blanco

Actinobacteria are the main producers of bioactive natural products essential for human health. Although their diversity in the atmosphere remains largely unexplored, using a multidisciplinary approach, we studied here 27 antibiotic producing Actinobacteria strains, isolated from 13 different precipitation events at three locations in Northern and Southern Spain. Rain samples were collected throughout 2013–2016, from events with prevailing Western winds. NOAA HYSPLIT meteorological analyses were used to estimate the sources and trajectories of the air-mass that caused the rainfall events. Five-day backward air masses trajectories of the diverse events reveals a main oceanic source from the North Atlantic Ocean, and in some events long range transport from the Pacific and the Arctic Oceans; terrestrial sources from continental North America and Western Europe were also estimated. Different strains were isolated depending on the precipitation event and the latitude of the sampling site. Taxonomic identification by 16S rRNA sequencing and phylogenetic analysis revealed these strains to belong to two Actinobacteria genera. Most of the isolates belong to the genus Streptomyces, thus increasing the number of species of this genus isolated from the atmosphere. Furthermore, five strains belonging to the rare Actinobacterial genus Nocardiopsis were isolated in some events. These results reinforce our previous Streptomyces atmospheric dispersion model, which we extend herein to the genus Nocardiopsis. Production of bioactive secondary metabolites was analyzed by LC-UV-MS. Comparative analyses of Streptomyces and Nocardiopsis metabolites with natural product databases led to the identification of multiple, chemically diverse, compounds. Among bioactive natural products identified 55% are antibiotics, both antibacterial and antifungal, and 23% have antitumor or cytotoxic properties; also compounds with antiparasitic, anti-inflammatory, immunosuppressive, antiviral, insecticidal, neuroprotective, anti-arthritic activities were found. Our findings suggest that over time, through samples collected from different precipitation events, and space, in different sampling places, we can have access to a great diversity of Actinobacteria producing an extraordinary reservoir of bioactive natural products, from remote and very distant origins, thus highlighting the atmosphere as a contrasted source for the discovery of novel compounds of relevance in medicine and biotechnology.


Sign in / Sign up

Export Citation Format

Share Document