surface drag
Recently Published Documents


TOTAL DOCUMENTS

222
(FIVE YEARS 85)

H-INDEX

26
(FIVE YEARS 5)

Author(s):  
M. Naveed ◽  
M. Imran ◽  
Z. Abbas ◽  
A. Nadeem

This paper investigates the phenomena of heat transfer and entropy generation on time-dependent electro-magnetohydrodynamic boundary layer flow of viscous fluid past a curved oscillatory stretchable Riga surface. Also, the impacts of thermal radiation and Joule heating are accounted for in the energy equation. To develop the flow model in mathematical form, curvilinear coordinates system is followed. The series solution of the governing nonlinear partial differential equations is attained with the help of the homotopy analysis method (HAM). The impacts of various involved parameters like dimensionless radius of curvature, modified magnetic parameter, the proportion of frequency of oscillation of the sheet to its stretchable rate parameter, magnetic parameter, Prandtl number, Eckert number, radiation parameter and Brinkman number on entropy generation, Bejan number, temperature and flow equations are comprehensively examined and results are displayed through graphs. Numerical variation in the magnitude of surface drag force and local Nusselt number under the influence of aforesaid parameters are presented through the tables. Entropy generation is enhanced with an enhancement in a radius of curvature and Brinkman number, while the Bejan number shows opposite behavior for both parameters. The amplitude of velocity distribution shows growing behavior with modified magnetic parameter.


Inventions ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 7
Author(s):  
Muhammad Saleem Iqbal ◽  
Abuzar Ghaffari ◽  
Arshad Riaz ◽  
Irfan Mustafa ◽  
Muhammad Raza

The current article incorporates the numerical investigation of heat exchange rate and skin friction carried out through nanofluid saturated with thermally balanced porous medium over a rough horizontal surface that follows the sinusoidal waves. The effects of the external magnetic field are discussed by managing the magnetic field strength applied normally to the flow pattern. The occurring partial differential governing equations are grasped through a strong numerical scheme of the Keller box method (KBM) against the various parameters. The findings are elaborated through tables and diagrams of velocity, temperature, skin friction, Nusselt number, streamlines, and heat lines. The percentage increase in Nusselt number and coefficient of skin friction over the flat and wavy surface is calculated which leads to the conclusion that the copper (Cu) nanoparticles are better selected as compared to the silver (Ag) for heat transfer enhancement. It is also evident from sketches that the current analysis can be used to enhance the surface drag force by means of nanoparticles. It is a matter of interest that the magnetic field can be used to manage the heat transfer rate in such a complicated surface flow. The current readings have been found accurate and valid when compared with the existing literature.


Author(s):  
Syed M. Hussain ◽  
Wasim Jamshed ◽  
Esra Karatas Akgül ◽  
Nor Ain Azeany Mohd Nasir

Solar power is the primary thermal energy source from the sunlight. This research has carried out the study of solar aircraft with solar radiation in enhancing efficiency. The thermal transfer inside the solar aircraft wings using a nanofluid past a parabolic surface trough collector (PTSC) is investigated thoroughly. The source of heat is regarded as solar radiation. For several impacts, such as porous medium, thermal radiation, and varying heat conductivity, the heat transmission performance of the wings is examined. By using the tangent hyperbolic nanofluid (THNF), the entropy analysis has been performed. The modeled momentum and energy equations are managed using the well-established numerical methodology known as the finite difference method. Two distinct kinds of nano solid-particles have been examined, such as Copper (Cu) and Zirconium dioxide (ZrO2), while Engine Oil (EO) being regarded as a based fluid. Different diagram parameters will be reviewed and revealed as figures and tables on speed, shear stress, temperature, and the surface drag coefficient and Nüselt number. It is observed that in terms of heat transfer for amplification of thermal radiation and changeable thermal conductance parameters, the performance of the aircraft wings raises. In contrast to traditional fluid, nanofluid is the best source of heat transmission. Cu-EO's thermal efficiency over ZrO2-EG falls to the minimum level of 12.6% and has reached a peak of 15.3%.


Author(s):  
Kerry Emanuel

Abstract In theoretical models of tropical dynamics, the effects of both surface friction and upward wave radiation through interaction with the stratosphere are oft-ignored, as they greatly complicate mathematical analysis. In this study, we relax the rigid-lid assumption and impose surface drag, which allows the barotropic mode to be excited in equatorial waves. In particular, a previously developed set of linear, strict quasi-equilibrium tropospheric equations is coupled with a dry, passive stratosphere, and surface drag is added to the troposphere momentum equations. Theoretical and numerical model analysis is performed on the model in the limits of an inviscid surface coupled to a stratosphere, as well as a frictional surface under a rigid-lid. This study confirms and extends previous research that shows the presence of a stratosphere strongly shifts the growth rates of fast propagating equatorial waves to larger scales, reddening the equatorial power spectrum. The growth rates of modes that are slowly propagating and highly interactive with cloud-radiation are shown to be negligibly affected by the presence of a stratosphere. Surface friction in this model framework acts as purely a damping mechanism and couples the baroclinic mode to the barotropic mode, increasing the poleward extent of the equatorial waves. Numerical solutions of the coupled troposphere-stratosphere model with surface friction show that the stratosphere stratification controls the extent of tropospheric trapping of the barotropic mode, and thus the poleward extent of the wave. The superposition of phase-shifted barotropic and first baroclinic modes is also shown to lead to an eastward vertical tilt in the dynamical fields of Kelvin-wave like modes.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1624
Author(s):  
Hui Ma ◽  
Xiaolei Ma ◽  
Shengwei Mei ◽  
Fei Wang ◽  
Yanwei Jing

Wind energy is a type of renewable and clean energy which has attracted more and more attention all over the world. The Northwest China is a region with the most abundant wind energy not only in China, but also in the whole world. To achieve the goal of carbon neutralization, there is an urgent need to make full use of wind energy in Northwest China and to improve the efficiency of wind power generation systems in this region. As forecast accuracy of the near-surface wind is crucial to wind-generated electricity efficiency, improving the near-surface wind forecast is of great importance. This study conducted the first test to incorporate the subgrid surface drag into the near-surface wind forecast under the complex terrain conditions over Northwest China by using two TopoWind models added by newer versions of the Weather Research and Forecasting (WRF) model. Based on three groups (each group had 28 runs) of forecasts (i.e., Control run, Test 01 and Test 02) started at 12:00 UTC of each day (ran for 48 h) during the period of 1–28 October 2020, it was shown that, overall, both TopoWind models could improve the near-surface wind speed forecasts under the complex terrain conditions over Northwest China, particularly for reducing the errors associated with the forecast of the wind-speed’s magnitude. In addition to wind forecast, the forecasts of sea level pressure and 2-m temperature were also improved. Different geographical features (wind-farm stations located south of the mountain tended to have more accurate forecast) and weather systems were found to be crucial to forecast accuracy. Good forecasts tended to appear when the simulation domain was mainly controlled by the high-pressure systems with the upper-level jet far from it.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1610
Author(s):  
Weizeng Shao ◽  
Tao Jiang ◽  
Yu Zhang ◽  
Jian Shi ◽  
Weili Wang

It is well known that numerical models are powerful methods for wave simulation of typhoons, where the sea surface drag coefficient is sensitive to strong winds. With the development of remote sensing techniques, typhoon data (i.e., wind and waves) have been captured by optical and microwave satellites such as the Chinese-French Oceanography SATellite (CFOSAT). In particular, wind and wave spectra data can be simultaneously measured by the Surface Wave Investigation and Monitoring (SWIM) onboard CFOSAT. In this study, existing parameterizations for the drag coefficient are implemented for typhoon wave simulations using the WAVEWATCH-III (WW3) model. In particular, a parameterization of the drag coefficient derived from sea surface roughness is adopted by considering the terms for wave steepness and wave age from the measurements from SWIM products of CFOSAT from 20 typhoons during 2019–2020 at winds up to 30 m/s. The simulated significant wave height (Hs) from the WW3 model was validated against the observations from several moored buoys active during three typhoons, i.e., Typhoon Fung-wong (2014), Chan-hom (2015), and Lekima (2019). The analysis results indicated that the proposed parameterization of the drag coefficient significantly improved the accuracy of typhoon wave estimation (a 0.49 m root mean square error (RMSE) of Hs and a 0.35 scatter index (SI)), greater than the 0.55 RMSE of Hs and >0.4 SI using other existing parameterizations. In this sense, the adopted parameterization for the drag coefficient is recommended for typhoon wave simulations using the WW3 model, especially for sea states with Hs < 7 m. Moreover, the accuracy of simulated waves was not reduced with growing winds and sea states using the proposed parameterization. However, the applicability of the proposed parameterization in hurricanes necessitates further investigation at high winds (>30 m/s).


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1474
Author(s):  
Bheemasandra M. Shankaralingappa ◽  
Javali K. Madhukesh ◽  
Ioannis E. Sarris ◽  
Bijjanal J. Gireesha ◽  
Ballajja C. Prasannakumara

The wide range of industrial applications of flow across moving or static solid surfaces has aroused the curiosity of researchers. In order to generate a more exact estimate of flow and heat transfer properties, three-dimensional modelling must be addressed. This plays a vital role in metalworking operations, producing plastic and rubber films, and the continuous cooling of fibre. In view of the above scope, an incompressible, laminar three-dimensional flow of a Casson nanoliquid in the occurrence of thermophoretic particle deposition over a non-linearly extending sheet is examined. To convert the collection of partial differential equations into ordinary differential equations, the governing equations are framed with sufficient assumptions, and appropriate similarity transformations are employed. The reduced equations are solved by implementing Runge Kutta Fehlberg 4th 5th order technique with the aid of a shooting scheme. The numerical results are obtained for linear and non-linear cases, and graphs are drawn for various dimensionless constraints. The present study shows that improvement in the Casson parameter values will diminish the axial velocities, but improvement is seen in thermal distribution. The escalation in the thermophoretic parameter will decline the concentration profiles. The rate of mass transfer, surface drag force will reduce with the improved values of the power law index. The non-linear stretching case shows greater impact in all of the profiles compared to the linear stretching case.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Abdullah Dawar ◽  
Ebenezer Bonyah ◽  
Saeed Islam ◽  
Ahmed Alshehri ◽  
Zahir Shah

The nanofluids can be used in the subsequent precise areas like chemical nanofluids, environmental nanofluids, heat transfer nanofluids, pharmaceutical nanofluids, drug delivery nanofluids, and process/extraction nanofluids. In short, the number of engineering and industrial applications of nanofluid technologies, as well as their emphasis on particular industrial applications, has been increased recently. Therefore, this exploration is carried out to analyze the nanofluid flow past a rotating disk with velocity slip and convective conditions. The water-based spherical-shaped nanoparticles of copper, alumina, and titanium have been considered in this analysis. The modeled problem has been solved with the help of homotopic technique. Convergence of the homotopic technique is shown with the help of the figure. The role of the physical factors on radial and tangential velocities, temperature, surface drag force, and heat transfer rate are displayed through figures and tables. The outcomes demonstrate that the surface drag force of the water-based spherical-shaped nanoparticles of Cu, Al2O3, and TiO2 has been reduced with a greater magnetic field. The radial and tangential velocities of the water-based spherical-shaped nanoparticles of Cu, Al2O3, and TiO2, and pure water have been augmented via magnetic parameter. The radial velocity of the water-based spherical-shaped nanoparticle of Cu has been augmented via nanoparticle volume fraction, whereas reduced for the Al2O3 and TiO2 nanoparticles. The tangential velocity of the water-based spherical-shaped nanoparticles of Cu, Al2O3, and TiO2 has reduced via nanoparticle volume fraction. Also, the variations in radial and tangential velocities are greater for slip conditions as compared to no-slip conditions.


Author(s):  
Faris Alzahrani ◽  
M. Ijaz Khan

The prime objective of binary chemical reaction (BCR) is concentrated on the study and optimization of chemical reaction to accomplish finest reactor design and performance, which elaborated the interfaces of flow phenomena, reaction kinetics and heat and mass transport. The reactor performance is likely to be linked to the reaction operating constraints and feed composition through the aforementioned factors. The applications of BCR are generally in the petroleum and petrochemical regions, but with the help of chemical engineering and reaction chemistry concepts, it could be used in different areas, like waste treatment, chemical pharmaceuticals, nanoparticles in advanced materials, microelectronics, enzyme technology, biochemical engineering, living systems, renewable energy systems, sustainable development, environment/pollution prevention, as well as to optimize a different reaction framework via simulation and modeling methodology. Owing such physical applications in mind, this research deals with the binary chemical reactive flow of non-Newtonian fluid (Walter’s B) subject to activation energy. Stagnation point is accounted. Radiative flux and ohmic heating effects are considered in the development of energy expression. Concentration and microorganism equations are considered. The governing system is altered to ordinary one through the important similarity variables. Results are obtained through bvp4c technique. All results are discussed graphically. Furthermore, surface drag force (skin friction) and heat and mass transfer (Nusselt and Sherwood) rates are calculated and displayed graphically. Significant results are listed in conclusion.


Sign in / Sign up

Export Citation Format

Share Document