Aeroelastic stability of a twin-box deck: Comparison of different procedures to assess the effect of geometric details

2022 ◽  
Vol 220 ◽  
pp. 104878
Author(s):  
T. Argentini ◽  
D. Rocchi ◽  
C. Somaschini ◽  
U. Spinelli ◽  
F. Zanelli ◽  
...  
2021 ◽  
Vol 11 (7) ◽  
pp. 3057
Author(s):  
Jin Lu ◽  
Zhigang Wu ◽  
Chao Yang

Both the dynamic characteristics and structural nonlinearities of an actuator will affect the flutter boundary of a fin–actuator system. The actuator models used in past research are not universal, the accuracy is difficult to guarantee, and the consideration of nonlinearity is not adequate. Based on modularization, a high-fidelity modeling method for an actuator is proposed in this paper. This model considers both freeplay and friction, which is easy to expand. It can be directly used to analyze actuator characteristics and perform aeroelastic analysis of fin–actuator systems. Friction can improve the aeroelastic stability, but the mechanism of its influence on the aeroelastic characteristics of the system has not been reported. In this paper, the LuGre model, which can better reflect the friction characteristics, was integrated into the actuator. The influence of the initial condition, freeplay, and friction on the aeroelastic characteristics of the system was analyzed. The comparison of the results with the previous research shows that oversimplified friction models are not accurate enough to reflect the mechanism of friction’s influence. By changing the loads, material, and geometry of contact surfaces, flutter can be effectively suppressed, and the power loss caused by friction can be minimized.


Aerospace ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 100
Author(s):  
Mohammadreza Amoozgar ◽  
Michael I. Friswell ◽  
Seyed Ahmad Fazelzadeh ◽  
Hamed Haddad Khodaparast ◽  
Abbas Mazidi ◽  
...  

In this paper, the effect of distributed electric propulsion on the aeroelastic stability of an electric aircraft wing was investigated. All the electric propulsors, which are of different properties, are attached to the wing of the aircraft in different positions. The wing structural dynamics was modelled by using geometrically exact beam equations, while the aerodynamic loads were simulated by using an unsteady aerodynamic theory. The electric propulsors were modelled by using a concentrated mass attached to the wing, and the motor’s thrust and angular momentum were taken into account. The thrust of each propulsor was modelled as a follower force acting exactly at the centre of gravity of the propulsor. The nonlinear aeroelastic governing equations were discretised using a time–space scheme, and the obtained results were verified against available results and very good agreement was observed. Two case studies were considered throughout the paper, resembling two flight conditions of the electric aircraft. The numerical results show that the tip propulsor thrust, mass, and angular momentum had the most impact on the aeroelastic stability of the wing. In addition, it was observed that the high-lift motors had a minimal effect on the aeroelastic stability of the wing.


Author(s):  
Giorgio Diana ◽  
Stoyan Stoyanoff ◽  
Andrew Allsop ◽  
Luca Amerio ◽  
Tommaso Argentini ◽  
...  

<p>This paper is part of a series of publications aimed at the divulgation of the results of the 3-step benchmark proposed by the IABSE Task Group 3.1 to define reference results for the validation of the software that simulate the aeroelastic stability and the response to the turbulent wind of super-long span bridges. Step 1 is a numerical comparison of different numerical models both a sectional model (Step 1.1) and a full bridge (Step 1.2) are studied. Step 2 will be the comparison of predicted results and experimental tests in wind tunnel. Step 3 will be a comparison against full scale measurements.</p><p>The results of Step 1.1 related to the response of a sectional model were presented to the last IABSE Symposium in Nantes 2018. In this paper, the results of Step 1.2 related to the response long-span full bridge are presented in this paper both in terms of aeroelastic stability and buffeting response, comparing the results coming from several TG members.</p>


Sign in / Sign up

Export Citation Format

Share Document