A Simple Analytical Approach to the Aeroelastic Stability Problem of Long-Span Cable-Stayed Bridges

Author(s):  
Giuseppe Vairo
2019 ◽  
Vol 45 (5) ◽  
pp. 3569-3579
Author(s):  
Shengjiang Sun ◽  
Kuihua Mei ◽  
Yiming Sun ◽  
Bo Li ◽  
Huanzi Huang

2016 ◽  
Vol 19 (11) ◽  
pp. 1797-1812 ◽  
Author(s):  
Jian Zhong ◽  
Yutao Pang ◽  
Jong-Su Jeon ◽  
Reginald DesRoches ◽  
Wancheng Yuan

Author(s):  
Giorgio Diana ◽  
Stoyan Stoyanoff ◽  
Andrew Allsop ◽  
Luca Amerio ◽  
Tommaso Argentini ◽  
...  

<p>This paper is part of a series of publications aimed at the divulgation of the results of the 3-step benchmark proposed by the IABSE Task Group 3.1 to define reference results for the validation of the software that simulate the aeroelastic stability and the response to the turbulent wind of super-long span bridges. Step 1 is a numerical comparison of different numerical models both a sectional model (Step 1.1) and a full bridge (Step 1.2) are studied. Step 2 will be the comparison of predicted results and experimental tests in wind tunnel. Step 3 will be a comparison against full scale measurements.</p><p>The results of Step 1.1 related to the response of a sectional model were presented to the last IABSE Symposium in Nantes 2018. In this paper, the results of Step 1.2 related to the response long-span full bridge are presented in this paper both in terms of aeroelastic stability and buffeting response, comparing the results coming from several TG members.</p>


2019 ◽  
Vol 6 (3) ◽  
Author(s):  
Anastasiya Shustikova ◽  
Andrei Kozichev ◽  
Sergei Paryshev ◽  
Konstantin Strelkov

Recently, long span bridge construction has been demanded for development of the regions of the Russian Federation. In terms of economy, it’s useful to build a combined road-railway bridge. Such bridges, generally, constitute a metal cross-cutting girder with carriageways on lower, upper or both zones of the girder. The major advantages of combined bridges are high strength and load capacity, plus cross-cutting to wind load. Focus of this research is a combined road-railway bridge over the Ob river at the stage of assembling and operation. The purpose of the study was to determine the limits of aeroelastic stability of combined road-railway bridge at the stage of assembling and operation using numerical simulation. To better understand the bridges behaviour in air flow, flow around a section model has been researched with CFD simulation in the ANSYS FLUENT. Then based on the given results of the calculations the dependence of the bridge vibrations on wind speed within a specified range is obtained, and also values of drag coefficient Сх, lift coefficient Су and torque coefficient Мz are received. These studies were carried out in the range of angles of attack α = ±3°. The possibility of divergence and galloping was also estimated. The results of the study made it possible to estimate the influence of air flow on combined bridge cross-cutting girder. Overall, the conducted research seems promising for further investigation and development in the field of bridge aeroelasticity.


2012 ◽  
Vol 446-449 ◽  
pp. 1158-1166 ◽  
Author(s):  
Hong Jiang Li

Different from traditional strengthening methods, the technology on replacement of structural members is a new strengthening concept for solving the problem of local failures in prestressed concrete cable-stayed bridges. To clarify the characteristics and realization ways of this technology, practical experience and latest achievements of strengthening prestressed concrete cable-stayed bridges in recent years in China were summarized comprehensively, such as replacement of stay cables, replacement of closure segment, replacement of tension rocker bearing cables at subsidiary piers, et al. Forms of Special diseases were described, and their failure mechanisms were given. Then calculation methods and key techniques of these strengthening ways were introduced. Engineering application and practice showed, the technology on replacement of structural members is a system engineering, namely, not only new structural members should meet the mechanical requirements of their own, but also the structural condition of whole bridge should be improved through replacing structural members. Establishment and development of this technology had important and far-reaching significance to promote the technical level of strengthening long-span bridges under the condition of special diseases and ensure bridges in the sate of safe and sustainable operation.


Author(s):  
Henryk Zobel ◽  
Wojciech Karwowski ◽  
Agnieszka Golubińska ◽  
Thakaa Al-Khafaji

<p>The problem of bridge fires is growing. Because of a bad experience in Poland, it was decided to improve fire resistance of long span bridge structures, and of cable-stayed bridges in particular. Statistics shows that fire is a real threat to this kind of structure. They also confirm that the worst results of fire are for those with an orthotropic deck rather than with a concrete one. The basic problems to solve are how to predict fire resistance of a particular bridge and how to ensure safety and structural integrity of the bridge structure. Taking into account the fact that bridge standards do not include information relating to fire protection, and fire standards do not determine rules for design, construction and maintenance of such structures, there are no regulations for this problem. Fire scenarios are devoted to buildings, but the thermo-structural behavior of bridges is different.</p>


Sign in / Sign up

Export Citation Format

Share Document