Nitrous oxide emission and microbial community of full-scale anoxic/aerobic membrane bioreactors at low dissolved oxygen setpoints

2020 ◽  
Vol 38 ◽  
pp. 101654
Author(s):  
Jianfeng Wen ◽  
Mark W. LeChevallier ◽  
Wendong Tao ◽  
Yanjin Liu
2016 ◽  
Vol 51 (2) ◽  
pp. 141-152
Author(s):  
Heloísa Fernandes ◽  
Regina Vasconcellos Antonio ◽  
Rejane Helena Ribeiro da Costa

A decentralized full-scale sequencing batch reactor (SBR) system for treating wastewater was operated to assess their feasibility and the response of bacterial population dynamic and nutrient removal performance. The reactor was operated under low dissolved oxygen (DO) concentration (0.3–0.7 mgL−1) and an average applied organic load of 0.5 g COD L−1 d−1 (COD: chemical oxygen demand). Removal efficiencies were higher than 70% for both soluble chemical oxygen demand and ammonium, with average effluent concentration of 51 ± 15 mg COD L−1 and 16.0 mg NH4+ L−1. The mixed liquor volatile suspended solids/total suspended solids ratio was 0.9, and the average food/microorganism ratio was 0.3 g COD g VSS−1 d−1 (VSS: volatile suspended solids). The active biomass was composed of 94.9% heterotrophic and 5.1% autotrophic organisms. The most frequently identified were chemoorganoheterotrophic organisms affiliated with Bacteroidetes and Firmicutes, some of them with the capacity to denitrify and grow under low DO concentration. Temperature and sludge withdrawal were important factors in determining nitrification and phosphorus removal rates. The SBR was viable for domestic wastewater treatment and showed that the microbial community greatly influenced its performance. This work can also provide valuable insights into further applications in systems operated under low DO condition.


2020 ◽  
Vol 81 (2) ◽  
pp. 333-344
Author(s):  
Jianfeng Wen ◽  
Mark W. LeChevallier ◽  
Wendong Tao

Abstract Simultaneous nitrification and denitrification under low dissolved oxygen conditions is an energy-saving modification of the activated sludge process to achieve efficient nitrogen removal. Geographically distinct full-scale treatment plants are excellent platforms to address the links of microbial community with operating parameters. Mixed liquor samples were collected from a sequencing batch reactor plant, oxidation ditch plant, and step-feed activated sludge plant. Next-Generation Sequencing of the samples showed that the microbial communities were similar at the phylum level among the plants, being dominated by Proteobacteria. Microbial composition of functional groups was similar between the react fill and react phases of the sequencing batch reactors, among four sequencing batch reactors, and among four oxidation ditches. Nitrospira was the only identified genus of autotropic nitrifying bacteria with a relative abundance of 2.2–2.5% in the oxidation ditches and 0.4–0.7% at the other plants. Heterotrophic nitrifying–aerobic denitrifying bacteria were dominated by Dechloromonas with a relative abundance of 0.4–1.0%. Microbial community composition and nitrogen removal mechanisms were related to overall level and local zonation of dissolved oxygen, mixed liquor suspended solids concentration, nitrogen and organic loadings, and solids retention time. Low dissolved oxygen and low organic and nitrogen loadings favored growth of Nitrospira.


2008 ◽  
Vol 42 (3) ◽  
pp. 812-826 ◽  
Author(s):  
Marlies J. Kampschreur ◽  
Wouter R.L. van der Star ◽  
Hubert A. Wielders ◽  
Jan Willem Mulder ◽  
Mike S.M. Jetten ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document