scholarly journals Separation theorems for convex polytopes and finitely-generated cones derived from theorems of the alternative

2012 ◽  
Vol 436 (9) ◽  
pp. 3784-3789 ◽  
Author(s):  
David Bartl
2019 ◽  
Vol 29 (01) ◽  
pp. 41-60 ◽  
Author(s):  
K. Matczak ◽  
A. Mućka ◽  
A. B. Romanowska

In an earlier paper, Romanowska, Ślusarski and Smith described a duality between the category of (real) polytopes (finitely generated real convex sets considered as barycentric algebras) and a certain category of intersections of hypercubes, considered as barycentric algebras with additional constant operations. This paper is a first step in finding a duality for dyadic polytopes, analogues of real convex polytopes, but defined over the ring [Formula: see text] of dyadic rational numbers instead of the ring of reals. A dyadic [Formula: see text]-dimensional polytope is the intersection with the dyadic space [Formula: see text] of an [Formula: see text]-dimensional real polytope whose vertices lie in the dyadic space. The one-dimensional analogues are dyadic intervals. Algebraically, dyadic polytopes carry the structure of a commutative, entropic and idempotent groupoid under the operation of arithmetic mean. Such dyadic polytopes do not preserve all properties of real polytopes. In particular, there are infinitely many (pairwise non-isomorphic) dyadic intervals. We first show that finitely generated subgroupoids of the groupoid [Formula: see text] are all isomorphic to dyadic intervals. Then, we describe a duality for the class of dyadic intervals. The duality is given by an infinite dualizing (schizophrenic) object, the dyadic unit interval. The dual spaces are certain subgroupoids of the square of the dyadic unit interval with additional constant operations. A second paper deals with a duality for dyadic triangles.


2009 ◽  
Vol 86 (3) ◽  
pp. 399-412 ◽  
Author(s):  
A. B. ROMANOWSKA ◽  
P. ŚLUSARSKI ◽  
J. D. H. SMITH

AbstractThis paper establishes a duality between the category of polytopes (finitely generated real convex sets considered as barycentric algebras) and a certain category of intersections of hypercubes, considered as barycentric algebras with additional constant operations.


2014 ◽  
Vol 51 (4) ◽  
pp. 547-555 ◽  
Author(s):  
B. Wehrfritz

Let G be a nilpotent group with finite abelian ranks (e.g. let G be a finitely generated nilpotent group) and suppose φ is an automorphism of G of finite order m. If γ and ψ denote the associated maps of G given by \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\gamma :g \mapsto g^{ - 1} \cdot g\phi and \psi :g \mapsto g \cdot g\phi \cdot g\phi ^2 \cdots \cdot \cdot g\phi ^{m - 1} for g \in G,$$ \end{document} then Gγ · kerγ and Gψ · ker ψ are both very large in that they contain subgroups of finite index in G.


2019 ◽  
Vol 16 (2) ◽  
pp. 1
Author(s):  
Shamsatun Nahar Ahmad ◽  
Nor’Aini Aris ◽  
Azlina Jumadi

Concepts from algebraic geometry such as cones and fans are related to toric varieties and can be applied to determine the convex polytopes and homogeneous coordinate rings of multivariate polynomial systems. The homogeneous coordinates of a system in its projective vector space can be associated with the entries of the resultant matrix of the system under consideration. This paper presents some conditions for the homogeneous coordinates of a certain system of bivariate polynomials through the construction and implementation of the Sylvester-Bèzout hybrid resultant matrix formulation. This basis of the implementation of the Bèzout block applies a combinatorial approach on a set of linear inequalities, named 5-rule. The inequalities involved the set of exponent vectors of the monomials of the system and the entries of the matrix are determined from the coefficients of facets variable known as brackets. The approach can determine the homogeneous coordinates of the given system and the entries of the Bèzout block. Conditions for determining the homogeneous coordinates are also given and proven.


Author(s):  
Jia-Bao Liu ◽  
Muhammad Faisal Nadeem ◽  
Mohammad Azeem

Aims and Objective: The idea of partition and resolving sets plays an important role in various areas of engineering, chemistry and computer science such as robot navigation, facility location, pharmaceutical chemistry, combinatorial optimization, networking, and mastermind game. Method: In a graph to obtain the exact location of a required vertex which is unique from all the vertices, several vertices are selected this is called resolving set and its generalization is called resolving partition, where selected vertices are in the form of subsets. Minimum number of partitions of the vertices into sets is called partition dimension. Results: It was proved that determining the partition dimension a graph is nondeterministic polynomial time (NP) problem. In this article, we find the partition dimension of convex polytopes and provide their bounds. Conclusion: The major contribution of this article is that, due to the complexity of computing the exact partition dimension we provides the bounds and show that all the graphs discussed in results have partition dimension either less or equals to 4, but it cannot been be greater than 4.


2020 ◽  
Vol 108 (5-6) ◽  
pp. 671-678
Author(s):  
D. V. Gusev ◽  
I. A. Ivanov-Pogodaev ◽  
A. Ya. Kanel-Belov

2016 ◽  
Vol 17 (4) ◽  
pp. 979-980
Author(s):  
Alberto Chiecchio ◽  
Florian Enescu ◽  
Lance Edward Miller ◽  
Karl Schwede
Keyword(s):  

Author(s):  
D. L. Harper

In an earlier paper (5) we showed that a finitely generated nilpotent group which is not abelian-by-finite has a primitive irreducible representation of infinite dimension over any non-absolute field. Here we are concerned primarily with the converse question: Suppose that G is a polycyclic-by-finite group with such a representation, then what can be said about G?


Sign in / Sign up

Export Citation Format

Share Document