LA-ICP MS zircon dating, whole-rock and Sr–Nd–Pb–O isotope geochemistry of the Camiboğazı pluton, Eastern Pontides, NE Turkey: Implications for lithospheric mantle and lower crustal sources in arc-related I-type magmatism

Lithos ◽  
2014 ◽  
Vol 192-195 ◽  
pp. 271-290 ◽  
Author(s):  
Abdullah Kaygusuz ◽  
Mehmet Arslan ◽  
Wolfgang Siebel ◽  
Ferkan Sipahi ◽  
Nurdane İlbeyli ◽  
...  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hisatoshi Ito

Abstract The magmatic history of the Oldest Toba Tuff (OTT), the second largest in volume after the Youngest Toba Tuff (YTT), northern Sumatra, Indonesia, was investigated using U–Pb zircon dating by LA-ICP-MS. Zircon dates obtained from surface and interior sections yielded ages of 0.84 ± 0.03 Ma and 0.97 ± 0.03 Ma, respectively. The youngest OTT zircon ages were in accordance with the 40Ar/39Ar eruption age of ~ 0.8 Ma, whereas the oldest zircon dates were ~ 1.20 Ma. Therefore, the distribution of zircon U–Pb ages is interpreted to reflect protracted zircon crystallization, suggesting that the estimated 800–2,300 km3 of OTT magma accumulated and evolved for at least 400,000 years prior to eruption. This result is comparable to the volume and timescales of YTT magmatism. The similarities of both magmatic duration and geochemistry between OTT and YTT may indicate that they are similar in size and that the caldera collapse that generated OTT might be much larger previously interpreted.


2011 ◽  
Vol 186 (1-4) ◽  
pp. 205-219 ◽  
Author(s):  
Xiaofeng Cao ◽  
Xinbiao Lü ◽  
Shentai Liu ◽  
Ping Zhang ◽  
Xiang Gao ◽  
...  

2006 ◽  
Vol 70 (18) ◽  
pp. A260
Author(s):  
J.A. Hollis ◽  
D. Frei ◽  
A. Gerdes ◽  
A.A. Garde ◽  
J.A.M. van Gool

2019 ◽  
Vol 104 (9) ◽  
pp. 1256-1272 ◽  
Author(s):  
Indrani Mukherjee ◽  
Ross R. Large ◽  
Stuart Bull ◽  
Daniel G. Gregory ◽  
Aleksandr S. Stepanov ◽  
...  

Abstract Redox-sensitive trace elements and sulfur isotope compositions obtained via in situ analyses of sedimentary pyrites from marine black shales are used to track atmosphere-ocean redox conditions between ∼1730 and ∼1360 Ma in the McArthur Basin, northern Australia. Three black shale formations within the basin (Wollogorang Formation 1730 ± 3 Ma, Barney Creek Formation 1640 ± 3 Ma, and Upper Velkerri Formation 1361 ± 21 Ma) display systematic stratigraphic variations in pyrite trace-element compositions obtained using LA-ICP-MS. The concentrations of several trace elements and their ratios, such as Se, Zn, Se/Co, Ni/Co, Zn/Co, Mo/Co, Se/Bi, Zn/Bi, Ni/Bi, increase from the stratigraphically lower Wollogorang Formation to the Upper Velkerri Formation. Cobalt, Bi, Mo, Cu, and Tl show a consistent decrease in abundance while Ni, As, and Pb show no obvious trends. We interpret these trace element trends as a response to the gradual increase of oxygen in the atmosphere-ocean system from ∼1730 to 1360 Ma. Elements more mobile during erosion under rising atmospheric oxygen show an increase up stratigraphy (e.g., Zn, Se), whereas elements that are less mobile show a decrease (e.g., Co, Bi). We also propose the increase of elemental ratios (Se/Co, Ni/Co, Zn/Co, Mo/Co, Ni/Bi, and Zn/Bi) up stratigraphy are strong indicators of atmospheric oxygenation. Sulfur isotopic compositions of marine pyrite (δ34Spyrite) from these formations, obtained using SHRIMP-SI, are highly variable, with the Wollogorang Formation exhibiting less variation (δ34S = –29.4 to +9.5‰; mean –5.03‰) in comparison to the Barney Creek (δ34S = –13.8 to +41.8‰; mean +19.88‰) and Velkerri Formations (δ34S = –14.2 to +52.8‰; mean +26.9‰). We propose that the shift in mean δ34S to heavier values up-section corresponds to increasing deep water oxygenation from ∼1730 to 1360 Ma. Incursion of oxygenated waters possibly caused a decrease in the areal extent of anoxic areas, at the same time, creating a possibly efficient reducing system. A stronger reducing system caused the δ34S of the sedimentary pyrites to become progressively heavier. Interestingly, heavy δ34S in pyrites overlaps with the increase in the concentration of certain trace elements (and their ratios) in sedimentary pyrites (Se, Zn, Se/Co, Ni/Co, Zn/Co, Mo/Co, Ni/Bi, and Zn/Bi). This study concludes that there was a gradual increase of atmospheric oxygen accompanied by ocean oxygenation through the first ∼400 million years of the Boring Billion (1800–1400 Ma) in the McArthur Basin.


GFF ◽  
2012 ◽  
Vol 134 (2) ◽  
pp. 99-114 ◽  
Author(s):  
Markku Väisänen ◽  
Olav Eklund ◽  
Yann Lahaye ◽  
Hugh O'Brien ◽  
Sören Fröjdö ◽  
...  
Keyword(s):  

2014 ◽  
Vol 29 (6) ◽  
pp. 981-989 ◽  
Author(s):  
E. Marillo-Sialer ◽  
J. Woodhead ◽  
J. Hergt ◽  
A. Greig ◽  
M. Guillong ◽  
...  

This papers describes the source of systematic bias in U–Pb zircon dating by LA-ICP-MS.


Sign in / Sign up

Export Citation Format

Share Document