atmospheric oxygen
Recently Published Documents


TOTAL DOCUMENTS

1225
(FIVE YEARS 260)

H-INDEX

82
(FIVE YEARS 8)

2022 ◽  
Author(s):  
Huifang Xu ◽  
Kuang-Sheng Hong ◽  
Meiye Wu ◽  
Seungyeol Lee

ABSTRACT A high concentration of hydrogen gas occurs in fracture zones of active faults that are associated with historical earthquakes. To explain the described phenomenon, we propose the piezoelectrochemical (PZEC) effect as a mechanism for the direct conversion of mechanical energy to chemical energy. When applied to natural piezoelectric crystals including quartz and serpentine, hydrogen and oxygen are generated via direct water decomposition. Laboratory experiments show H2 gas is generated from strained piezoelectric material due to the extremely low solubility of H2, suggesting that the deformed or strained mineral surfaces can catalyze water decomposition. If the strain-induced H2 production is significant, hydrogen measurements at monitoring sites can offer information on deformation of rocks operating at depth prior to earthquakes. Oxygen can be measured in water due to its high solubility compared to hydrogen. Our experimental results demonstrate that dissolved oxygen generated from the PZEC effect can oxidize dissolved organic dye and ferrous iron in an aqueous Fe(II)–silicate metal complex. The hydrogen and oxygen formed through stoichiometric decomposition of water in the presence of strained or deformed minerals in fault zones (including subduction zones and transform faults) may be referred to as tectonic hydrogen and tectonic oxygen. Tectonic hydrogen could be a potential energy source for deep subsurface and glacier-bedrock interface microbial communities that rely on molecular hydrogen for metabolism. Tectonic oxygen may have been an important oxidizing agent when dissolved in water during times in early Earth history when atmospheric oxygen levels were extremely low. Reported “whiffs” of dissolved oxygen before the Great Oxidation Event might have been related to tectonic activity.


Cells ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 151
Author(s):  
Alexander Martens ◽  
Nicole de Buhr ◽  
Hiroshi Ishikawa ◽  
Horst Schroten ◽  
Maren von Köckritz-Blickwede

The host–pathogen interaction during meningitis can be investigated with blood-cerebrospinal-fluid-barrier (BCSFB) cell culture models. They are commonly handled under atmospheric oxygen conditions (19–21% O2), although the physiological oxygen conditions are significantly lower in cerebrospinal fluid (CSF) (7–8% O2). We aimed to characterize oxygen levels in a Streptococcus (S.) suis-infected BCSFB model with transmigrating neutrophils. A BCSFB model with human choroid plexus epithelial cells growing on transwell-filters was used. The upper “blood”-compartment was infected and blood-derived neutrophils were added. S. suis and neutrophils transmigrated through the BCSFB into the “CSF”-compartment. Here, oxygen and pH values were determined with the non-invasive SensorDish® reader. Slight orbital shaking improved the luminescence-based measurement technique for detecting free oxygen. In the non-infected BCSFB model, an oxygen value of 7% O2 was determined. However, with S. suis and transmigrating neutrophils, the oxygen value significantly decreased to 2% O2. The pH level decreased slightly in all groups. In conclusion, we characterized oxygen levels in the BCSFB model and demonstrated the oxygen consumption by cells and bacteria. Oxygen values in the non-infected BCSFB model are comparable to in vivo values determined in pigs in the CSF. Infection and transmigrating neutrophils decrease the oxygen value to lower values.


2022 ◽  
Vol 354 ◽  
pp. 00012
Author(s):  
Maria Prodan ◽  
Andrei Szollosi-Moța ◽  
Vasilica Irina Nălboc ◽  
Niculina Sonia Șuvar ◽  
Adrian Jurca

Spontaneous combustion is a phenomenon that results from the heating of combustible organic powders by slow oxidation and which occurs through the air passage (created by an air depression) through the mass of dust. The oxidation phenomenon of combustible powders represents their reaction with atmospheric oxygen resulting in products of carbon dioxide, carbon oxide, water and other gases whose content depends on the temperature at which the oxidation takes place. The self-ignition of combustible dusts depends on their chemical composition, the properties of component substances, on the particle size and geometry of the material mass and, last but not least, on the temperature of the environment. Due to global worries of sustainability in construction engineering the trend is to use ecofriendly organic waste to various purposes as in construction materials. The challenge is that by using this kind of materials one should ensure the safety related to the process of such organic materials which are known to have combustible properties. The purpose of this work is to present the self-ignition behavior of combustible dusts such as sunflower and wood by means of drying tests under constant temperature conditions.


2021 ◽  
pp. 99-118
Author(s):  
Franklin M. Harold

The story of life tells of relentless expansion from obscure beginnings to smother the earth in organized biochemistry. First came the prokaryotes, Bacteria and Archaea, followed some two billion years later by eukaryotic microbes. The latter pattern of organization underpins the rise of multicellular organisms, and their spectacular proliferation over the past 600 million years. There have been no fundamentally new kinds of organisms since, but the rise of mind culminating in humanity may signal a new phase in life’s history. Life has expanded in both quantity and quality, a gyre of mounting size, complexity, and functional capacity; in some elusive sense evolution is progressive. Multicellularity, the key invention, is not singular but happened multiple times in several eukaryotic lineages. The proliferation of higher organisms was probably enabled by increased energy flow, and dependent on the increase in atmospheric oxygen. It is studded with innovations in structure, physiology, and behavior, whose origin is a recurrent theme in evolutionary biology. Novelty is rooted in mutational events at the gene level, supplemented by the acquisition of genes from the outside by both gene transfer and symbiosis, and possibly by other avenues. Chance events were scrutinized and culled by natural selection. There appears to be no intrinsic progressive drive, but natural selection generally favors the more functional and better organized.


Author(s):  
Vadym Kovalenko ◽  
Valerii Kotok

Nail polish, in particular gel polish, is the most commonly used cosmetic product. A component of the gel polish, which determines the consumer color characteristics of the gel polish. Layered double hydroxides (LDH) are promising pigments. To expand the range of colors and shades of pigments, the use of LDH with colored host and guest cations is promising. The parameters of synthesis and color characteristics of samples of Zn-Co and Cu-Co hydroxide pigments were studied. To obtain LDH with Co as a guest cation in the synthesis, the conversion of cobalt to the trivalent state was carried out at a temperature of 80 °C using oxidation with atmospheric oxygen or sodium hypochlorite. The oxidation efficiency was evaluated by X-ray phase analysis by the presence or absence of cobalt-containing phases. The color characteristics of the synthesized pigment samples were studied by spectroscopic measurement and calculation in RGB, CIELab, and LCH color models. The low efficiency of cobalt oxidation at the moment of Zn-Co LDH synthesis with atmospheric oxygen at an elevated synthesis temperature of 80 °C was shown, while cobalt was released as a separate Co3O4 phase. A higher efficiency of cobalt oxidation at the moment of synthesis using sodium hypochlorite with the formation of Zn-Co LDH was revealed. It is recommended to use the hypochlorite oxidation of Co2+ to Co3+ in the LDH synthesis with Co in the form of a guest cation. The formation of a separate phase of zinc oxide was found in both types of oxidation due to the thermal decomposition of zinc hydroxide. Comparative analysis of color characteristics showed that all samples have a brown color of different saturation. It was revealed that during the formation of Co-containing LDH, the lightness of the color decreases. Color saturation increases in the case of a colored host cation, such as Cu.


2021 ◽  
pp. jgs2021-115
Author(s):  
Neil S. Davies ◽  
Russell J. Garwood ◽  
William J. McMahon ◽  
Joerg W. Schneider ◽  
Anthony P. Shillito

Arthropleura is a genus of giant myriapods that ranged from the early Carboniferous to Early Permian, with some individuals attaining lengths >2 m. Although most of the known fossils of the genus are disarticulated and occur primarily in late Carboniferous (Pennsylvanian) strata, we report here partially articulated Arthropleura remains from the early Carboniferous Stainmore Formation (Serpukhovian; Pendleian) in the Northumberland Basin of northern England. This 76 × 36 cm specimen represents part of an exuvium and is notable because only two comparably articulated giant Arthropleura fossils are previously known. It represents one of the largest known arthropod fossils and the largest arthropleurid recovered to date, the earliest (Mississippian) body fossil evidence for gigantism in Arthropleura, and the first instance of a giant arthropleurid body fossil within the same regional sedimentary succession as the large arthropod trackway Diplichnites cuithensis. The remains represent 12–14 anterior Arthropleura tergites in the form of a partially sand-filled dorsal exoskeleton. The original organism is estimated to have been 55 cm in width and up to 2.63 m in length, weighing c. 50 kg. The specimen is preserved partially in three dimensions within fine sandstone and has been moderately deformed by synsedimentary tectonics. Despite imperfect preservation, the specimen corroborates the hypothesis that Arthropleura had a tough, sclerotized exoskeleton. Sedimentological evidence for a lower delta plain depositional environment supports the contention that Arthropleura preferentially occupied open woody habitats, rather than swampy environments, and that it shared such habitats with tetrapods. When viewed in the context of all the other global evidence for Arthropleura, the specimen contributes to a dataset that shows the genus had an equatorially restricted palaeogeographical range, achieved gigantism prior to late Paleozoic peaks in atmospheric oxygen, and was relatively unaffected by climatic events in the late Carboniferous, prior to its extinction in the early Permian.Supplementary material: Images of 3D mesh model of Arthropleura are available at https://doi.org/10.6084/m9.figshare.c.5715450


2021 ◽  
Vol 7 (51) ◽  
Author(s):  
Yuzhen Yan ◽  
Edward J. Brook ◽  
Andrei V. Kurbatov ◽  
Jeffrey P. Severinghaus ◽  
John A. Higgins
Keyword(s):  

2021 ◽  
Vol 118 (51) ◽  
pp. e2105074118
Author(s):  
Peng Liu ◽  
Jingjun Liu ◽  
Aoshuang Ji ◽  
Christopher T. Reinhard ◽  
Noah J. Planavsky ◽  
...  

Reconstructing the history of biological productivity and atmospheric oxygen partial pressure (pO2) is a fundamental goal of geobiology. Recently, the mass-independent fractionation of oxygen isotopes (O-MIF) has been used as a tool for estimating pO2 and productivity during the Proterozoic. O-MIF, reported as Δ′17O, is produced during the formation of ozone and destroyed by isotopic exchange with water by biological and chemical processes. Atmospheric O-MIF can be preserved in the geologic record when pyrite (FeS2) is oxidized during weathering, and the sulfur is redeposited as sulfate. Here, sedimentary sulfates from the ∼1.4-Ga Sibley Formation are reanalyzed using a detailed one-dimensional photochemical model that includes physical constraints on air–sea gas exchange. Previous analyses of these data concluded that pO2 at that time was <1% PAL (times the present atmospheric level). Our model shows that the upper limit on pO2 is essentially unconstrained by these data. Indeed, pO2 levels below 0.8% PAL are possible only if atmospheric methane was more abundant than today (so that pCO2 could have been lower) or if the Sibley O-MIF data were diluted by reprocessing before the sulfates were deposited. Our model also shows that, contrary to previous assertions, marine productivity cannot be reliably constrained by the O-MIF data because the exchange of molecular oxygen (O2) between the atmosphere and surface ocean is controlled more by air–sea gas transfer rates than by biological productivity. Improved estimates of pCO2 and/or improved proxies for Δ′17O of atmospheric O2 would allow tighter constraints to be placed on mid-Proterozoic pO2.


2021 ◽  
Author(s):  
◽  
Lucjan Sajkowski

<p>A primary goal of this thesis was to obtain kinetic data on the breakdown and isomerisation reactions of naphthalene disulfonate (NDS) and naphthalene sulfonate (NSA) compounds under geothermal conditions. A secondary aim of this study was to investigate NDS/NSA isomerisation transformations as well as to study their kinetics and identify products of thermal disproportionation. Because of their apparent thermal stability, naphthalene disulfonate solutions have been frequently injected into active geothermal reservoirs and their subsequent detection (“recovery”) in nearby wells/bore holes used as an indicator of well connectivity and local permeability. The results obtained in this thesis will enable a more insightful interpretation of field injection results and fluid flow in active geothermal reservoirs. The studies presented in this thesis were designed to determine the thermal stability of aqueous NDS and NSA at high temperatures from 100 to 400°C in pure water and different salt solutions (i.e. NaCl +/- Na2SO4 and Na2S) at saturated vapour pressure. The stabilities and isomerisation transformations of NDS and NSA were also studied in the presence of solid materials (i.e. quartz, greywacke, pumice) which may occur in the host geological environment of hydrothermal/geothermal reservoirs in the Earth’s crust. Dilute aqueous solutions of NDS and NSA were contained in sealed silica glass ampoules (purged of atmospheric oxygen) and placed in stainless steel pressure vessels and heated for varying times to the desired high temperatures. Additional experiments were also conducted in which dilute NDS and NSA solutions were pumped from a de-oxygenated reservoir container through a flow-through autoclave containing different rock and mineral phases at temperatures up 400°C. The resulting NDS and NSA isomers were then analysed using HPLC and GC-MS methodologies. The 1,5-naphthalene disulfonate isomer (1,5-NDS) was found to be the least stable at pHt = 3 - 8 and readily transformed to 1-naphthalene sulfonate (1-NSA) at t ≥ 200°C. The 2-NSA was found to be the most stable isomer but disappeared at t ≥ 300°. The experimental data indicated that the stabilities of all the NDS and NSA studied as a function of temperature, pH and salt (NaCl) concentration were in the sequence: 1,5-NDS < 1,6-NDS < 2,6-NDS ≈ 2,7-NDS < 2-NSA. The presence of dissolved salts was shown to slow down the decomposition rates. Results from flow-through autoclave experiments suggest that between 100 and 250°C, the stabilities of 2,6-NDS, 2,7-NDS, 1,5-NDS and 1,6-NDS are mainly controlled by solution pH, while at t ≥ 300°C, temperature is the main stability controlling factor. Additionally, no adsorption of NDS/NSA on the surface of minerals was observed. A new high-performance liquid chromatography (HPLC) method combined with solid-phase extraction (SPE) was developed to enable detection of NDS/NSA breakdown products at t ≥ 300°C. In hydrothermal solutions at temperatures greater than 300°C, all the naphthalene sulfonate isomers become unstable with the formation naphthalene (NAP) and the two naphthol isomers, 1-naphthol (1-NAP) and 2-naphthol (2-NAP), as confirmed by both the new HPLC/SPE method and GC-MS (gas chromatography–mass spectroscopy). In addition, 1-chloronaphthalene was also detected (using GC-MS) as a high temperature reaction product NDS/NSA disproportionation in 0.05 m NaCl solutions. The results of the experiments carried out during this thesis indicate that the stabilities the naphthalene mono- and disulfonates are a function of temperature, pH and salt concentration. The naphthalene sulfonates transform to different isomers and the kinetics of these isomerisation reactions have been determined. At temperatures ≥ 300°C, the NDS and NSA compounds disproportionate to the naphthalene “backbone” molecule as well as to the two stable naphthols and 1-chloronaphthalene (in chloride containing solutions). The application of naphthalene sulfonates to determine well connectivity and local permeabilities in active geothermal reservoirs is thus rather more complicated than previously appreciated. An understanding of the various isomer transformations and their kinetics is required. Furthermore, naphthalene sulfonates injected into high temperature geothermal reservoirs are unstable and breakdown to naphthalene, naphthols and probable halogenated naphthalene compounds, none of which have been considered in the interpretation of NDS/NSA recovery data in active geothermal reservoirs. The thermal stabilities of NAP, 1- and 2-NAP and 1-chloronaphthalene indicate that these compounds may also be employed as connectivity tracers in high temperature (t ≥ 300°C) systems.</p>


Sign in / Sign up

Export Citation Format

Share Document