stable isotope
Recently Published Documents


TOTAL DOCUMENTS

12252
(FIVE YEARS 2269)

H-INDEX

169
(FIVE YEARS 17)

2022 ◽  
Vol 371 ◽  
pp. 131113
Author(s):  
Fumikazu Akamatsu ◽  
Hideaki Shimizu ◽  
Sakura Hayashi ◽  
Aya Kamada ◽  
Yukari Igi ◽  
...  

2022 ◽  
Vol 41 ◽  
pp. 103325
Author(s):  
Patxi Pérez-Ramallo ◽  
José Ignacio Lorenzo-Lizalde ◽  
Alexandra Staniewska ◽  
Belén Lopez ◽  
Michelle Alexander ◽  
...  

Diversity ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 56
Author(s):  
Claudia Andrade ◽  
Cristóbal Rivera ◽  
Erik Daza ◽  
Eduardo Almonacid ◽  
Fernanda Ovando ◽  
...  

The southern king crab Lithodes santolla is one of the most economically important fishery species in the southern waters of the Atlantic and Pacific Oceans. A combination of stomach content and stable isotope analyses was used to reveal the potential dietary characteristics, isotopic niche, overlap among maturity stages and sexes, and trophic relationships of an L. santolla population in the Nassau Bay, Cape Horn region. Stable isotope analyses indicated that L. santolla assimilated energy from a basal carbon source, the giant kelp Macrocystis pyrifera, forming the trophic baseline of the benthic food web. Moreover, the trophic position of L. santolla varied among late juveniles and adults, suggesting that the southern king crab does undergo an ontogenetic diet shift. L. santolla exhibited intraspecific isotopic niche variation, reflecting niche differentiation which allows the species to partition resources. The trophic relationships of L. santolla with the associated fauna suggested some potential interactions for food resources/habitat use when they are limited. This study is the first attempt to characterize the trophic dynamics of the southern king crab in the Cape Horn area and, by generating more data, contributes to the conservation of the king crab population and the long-term management of local fisheries that rely on this resource.


PeerJ ◽  
2022 ◽  
Vol 10 ◽  
pp. e12777
Author(s):  
Svenja Meyer ◽  
Dominika Kundel ◽  
Klaus Birkhofer ◽  
Andreas Fliessbach ◽  
Stefan Scheu

Higher frequencies of summer droughts are predicted to change soil conditions in the future affecting soil fauna communities and their biotic interactions. In agroecosystems drought effects on soil biota may be modulated by different management practices that alter the availability of different food resources. Recent studies on the effect of drought on soil microarthropods focused on measures of abundance and diversity. We here additionally investigated shifts in trophic niches of Collembola and Oribatida as indicated by stable isotope analysis (13C and 15N). We simulated short-term summer drought by excluding 65% of the ambient precipitation in conventionally and organically managed winter wheat fields on the DOK trial in Switzerland. Stable isotope values suggest that plant litter and root exudates were the most important resources for Collembola (Isotoma caerulea, Isotomurus maculatus and Orchesella villosa) and older plant material and microorganisms for Oribatida (Scheloribates laevigatus and Tectocepheus sarekensis). Drought treatment and farming systems did not affect abundances of the studied species. However, isotope values of some species increased in organically managed fields indicating a higher proportion of microorganisms in their diet. Trophic niche size, a measure of both isotope values combined, decreased with drought and under organic farming in some species presumably due to favored use of plants as basal resource instead of algae and microorganisms. Overall, our results suggest that the flexible usage of resources may buffer effects of drought and management practices on the abundance of microarthropods in agricultural systems.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Mariya Misheva ◽  
Konstantinos Kotzamanis ◽  
Luke C. Davies ◽  
Victoria J. Tyrrell ◽  
Patricia R. S. Rodrigues ◽  
...  

AbstractOxylipins are potent biological mediators requiring strict control, but how they are removed en masse during infection and inflammation is unknown. Here we show that lipopolysaccharide (LPS) dynamically enhances oxylipin removal via mitochondrial β-oxidation. Specifically, genetic or pharmacological targeting of carnitine palmitoyl transferase 1 (CPT1), a mitochondrial importer of fatty acids, reveal that many oxylipins are removed by this protein during inflammation in vitro and in vivo. Using stable isotope-tracing lipidomics, we find secretion-reuptake recycling for 12-HETE and its intermediate metabolites. Meanwhile, oxylipin β-oxidation is uncoupled from oxidative phosphorylation, thus not contributing to energy generation. Testing for genetic control checkpoints, transcriptional interrogation of human neonatal sepsis finds upregulation of many genes involved in mitochondrial removal of long-chain fatty acyls, such as ACSL1,3,4, ACADVL, CPT1B, CPT2 and HADHB. Also, ACSL1/Acsl1 upregulation is consistently observed following the treatment of human/murine macrophages with LPS and IFN-γ. Last, dampening oxylipin levels by β-oxidation is suggested to impact on their regulation of leukocyte functions. In summary, we propose mitochondrial β-oxidation as a regulatory metabolic checkpoint for oxylipins during inflammation.


Sign in / Sign up

Export Citation Format

Share Document