isotope analyses
Recently Published Documents


TOTAL DOCUMENTS

1077
(FIVE YEARS 260)

H-INDEX

67
(FIVE YEARS 7)

2022 ◽  
Vol 41 ◽  
pp. 103298
Author(s):  
Serena Sabatini ◽  
Karin Margarita Frei ◽  
Jacopo De Grossi Mazzorin ◽  
Andrea Cardarelli ◽  
Gianluca Pellacani ◽  
...  

Diversity ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 56
Author(s):  
Claudia Andrade ◽  
Cristóbal Rivera ◽  
Erik Daza ◽  
Eduardo Almonacid ◽  
Fernanda Ovando ◽  
...  

The southern king crab Lithodes santolla is one of the most economically important fishery species in the southern waters of the Atlantic and Pacific Oceans. A combination of stomach content and stable isotope analyses was used to reveal the potential dietary characteristics, isotopic niche, overlap among maturity stages and sexes, and trophic relationships of an L. santolla population in the Nassau Bay, Cape Horn region. Stable isotope analyses indicated that L. santolla assimilated energy from a basal carbon source, the giant kelp Macrocystis pyrifera, forming the trophic baseline of the benthic food web. Moreover, the trophic position of L. santolla varied among late juveniles and adults, suggesting that the southern king crab does undergo an ontogenetic diet shift. L. santolla exhibited intraspecific isotopic niche variation, reflecting niche differentiation which allows the species to partition resources. The trophic relationships of L. santolla with the associated fauna suggested some potential interactions for food resources/habitat use when they are limited. This study is the first attempt to characterize the trophic dynamics of the southern king crab in the Cape Horn area and, by generating more data, contributes to the conservation of the king crab population and the long-term management of local fisheries that rely on this resource.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
P. Bouilhol ◽  
B. Debret ◽  
E. C. Inglis ◽  
M. Warembourg ◽  
T. Grocolas ◽  
...  

AbstractSerpentinites are an important sink for both inorganic and organic carbon, and their behavior during subduction is thought to play a fundamental role in the global cycling of carbon. Here we show that fluid-derived veins are preserved within the Zermatt-Saas ultra-high pressure serpentinites providing key evidence for carbonate mobility during serpentinite devolatilisation. We show through the O, C, and Sr isotope analyses of vein minerals and the host serpentinites that about 90% of the meta-serpentinite inorganic carbon is remobilized during slab devolatilisation. In contrast, graphite-like carbonaceous compounds remain trapped within the host rock as inclusions within metamorphic olivine while the bulk elemental and isotope composition of organic carbon remains relatively unchanged during the subduction process. This shows a decoupling behavior of carbon during serpentinite dehydration in subduction zones. This process will therefore facilitate the transfer of inorganic carbon to the mantle wedge and the preferential slab sequestration of organic carbon en route to the deep mantle.


Geofluids ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-25
Author(s):  
Xiwei Qin ◽  
Haizhou Ma ◽  
Xiying Zhang ◽  
Xiasong Hu ◽  
Guorong Li ◽  
...  

The Nangqen and Qamdo (NQ-QD) basins in China have very rich geothermal and brine resources. The origin and spatiotemporal evolutionary processes of its hot and saline springs however remain unclear. Geochemical and isotopic (18O, 2H, 3H) studies have therefore been conducted on the water from the geothermal and saline springs in the NQ-QD Basin. All saline springs in the study area are of the Na-Cl geochemical type while geothermal waters show different geochemical types. The oxygen and hydrogen isotopic compositions of the springs in the NQ-QD Basin are primarily controlled by meteoric water or ice-snow melt water and are influenced by rock-water interactions. It is found that the saline springs in the study area are derived from the dissolution of halite and sulfate that occur in the tertiary Gongjue red bed, while the hot springs in the QD Basin are greatly influenced by the dissolution of carbonatites and sulfates from the Bolila (T3b) and Huakaizuo (J2h) formations. Results from silica geothermometry and a silicon-enthalpy hybrid model indicate that the apparent reservoir temperatures and reservoir temperatures for the hot springs in the QD Basin range from 57–130°C to75–214°C, respectively. Deuterium analysis indicates that most of the hot springs are recently recharged rain water. Furthermore, the saline springs have a weaker groundwater regeneration capacity than the hot springs. Tritium data shows that the ranges of calculated residence times for springs in this study are 25 to 55 years, and that there is a likelihood that hot springs in the QD Basin originated from two different hydrothermal systems. The geochemical characteristics of the NQ-QD springs are similar to those of the Lanping-Simao Basin, indicating similar solute sources. Thus, the use of water isotope analyses coupled with hydrogeochemistry proves to be an effective tool to determine the origin and spatiotemporal evolution of the NQ-QD spring waters.


2022 ◽  
Author(s):  
Clinton I. Barineau ◽  
et al.

Sample Preparation and Geochemical Analysis Methodology; Table S1: Major oxide percentages for metaigneous rocks of the Wedowee-Emuckfaw-Dahlonega basin; Table S2: Measured isotope ratios and normalized U-Pb ages calculated without 204Pb Correction; Table S3: Lu-Hf isotope analyses; Table S4: Latitude-longitude (WGS84), geologic unit, and age information for samples analyzed as part of this project.


Aquaculture ◽  
2022 ◽  
Vol 547 ◽  
pp. 737484
Author(s):  
Simon Pouil ◽  
Jean-Michel Mortillaro ◽  
Reza Samsudin ◽  
Domenico Caruso ◽  
Anang Hari Kristanto ◽  
...  

Author(s):  
Sergey Vasilyev ◽  
◽  
Tatyana Puzanova ◽  
Dmitry Vasiliev ◽  
Svetlana Borutskaya ◽  
...  

The article presents the results of research on the reconstruction of natural and climatic conditions and human adaptation to them. In order to identify the evolutionary stages of the natural environment of the Western Caspian region in the second half of the Holocene, buried sub-kurgan soils and bone remains in the Bogomolny Sands 1 mound were analyzed. Spore-pollen, anthropological and isotope analyses were carried out on soil and bone samples. Bioclimatic fluctuations of the natural environment were established based on the reconstruction of paleolandscapes (soils, vegetation) and associated changes in socio-cultural factors (changes in paleo-diet, anthropological characteristics).


Sign in / Sign up

Export Citation Format

Share Document